Show simple item record

A bifurcation analysis of two coupled calcium oscillators

dc.contributor.authorBindschadler, Michaelen_US
dc.contributor.authorSneyd, Jamesen_US
dc.date.accessioned2010-05-06T22:50:30Z
dc.date.available2010-05-06T22:50:30Z
dc.date.issued2001-03en_US
dc.identifier.citationBindschadler, Michael; Sneyd, James (2001). "A bifurcation analysis of two coupled calcium oscillators." Chaos 11(1): 237-246. <http://hdl.handle.net/2027.42/70869>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70869
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=12779457&dopt=citationen_US
dc.description.abstractIn many cell types, asynchronous or synchronous oscillations in the concentration of intracellular free calcium occur in adjacent cells that are coupled by gap junctions. Such oscillations are believed to underlie oscillatory intercellular calcium waves in some cell types, and thus it is important to understand how they occur and are modified by intercellular coupling. Using a previous model of intracellular calcium oscillations in pancreatic acinar cells, this article explores the effects of coupling two cells with a simple linear diffusion term. Depending on the concentration of a signal molecule, inositol (1,4,5)-trisphosphate, coupling two identical cells by diffusion can give rise to synchronized in-phase oscillations, as well as different-amplitude in-phase oscillations and same-amplitude antiphase oscillations. Coupling two nonidentical cells leads to more complex behaviors such as cascades of period doubling and multiply periodic solutions. This study is a first step towards understanding the role and significance of the diffusion of calcium through gap junctions in the coordination of oscillatory calcium waves in a variety of cell types. © 2001 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent159259 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleA bifurcation analysis of two coupled calcium oscillatorsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Mathematics, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationotherInstitute of Information and Mathematical Sciences, Massey University Albany Campus, Private Bag 102-904, North Shore Mail Centre, Auckland, New Zealanden_US
dc.identifier.pmid12779457en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70869/2/CHAOEH-11-1-237-1.pdf
dc.identifier.doi10.1063/1.1342161en_US
dc.identifier.sourceChaosen_US
dc.identifier.citedreferenceM. J. Sanderson, A. C. Charles, S. Boitano, and E. R. Dirksen, “Mechanisms and function of intercellular calcium signaling,” Molecular and Cellular Endocrinology MCEND698, 173–187 (1994).en_US
dc.identifier.citedreferenceA. P. Thomas, G. S. J. Bird, G. Hajnóczky, L. D. Robb-Gaspers, and J. W. J. Putney, “Spatial and temporal aspects of cellular calcium signaling,” FASEB J. FAJOEC10, 1505–1517 (1996).en_US
dc.identifier.citedreferenceJ. Sneyd, B. Wetton, A. C. Charles, and M. J. Sanderson, “Intercellular calcium waves mediated by diffusion of inositol trisphosphate: A two-dimensional model,” Am. J. Physiol. AJPHAP268, C1537–C1545 (1995a).en_US
dc.identifier.citedreferenceL. D. Robb-Gaspers and A. P. Thomas, “Coordination of Ca2+Ca2+ signaling by intercellular propagation of Ca2+Ca2+ waves in the intact liver,” J. Biol. Chem. JBCHA3270, 8102–8107 (1995).en_US
dc.identifier.citedreferenceT. Tordjmann, B. Berthon, M. Claret, and L. Combettes, “Coordinated intercellular calcium waves induced by noradrenaline in rat hepatocytes: dual control by gap junction permeability and agonist,” EMBO J. EMJODG16, 5398–5407 (1997).en_US
dc.identifier.citedreferenceT. Tordjmann, B. Berthon, E. Jacquemin, C. Clair, N. Stelly, G. Guillon, M. Claret, and L. Combettes, “Receptor-oriented intercellular calcium waves evoked by vasopressin in rat hepatocytes,” EMBO J. EMJODG17, 4695–4703 (1998).en_US
dc.identifier.citedreferenceT. Höfer, “Model of intercellular calcium oscillations in hepatocytes: synchronization of heterogeneous cells,” Biophys. J. BIOJAU77, 1244–1256 (1999).en_US
dc.identifier.citedreferenceG. Dupont, T. Tordjmann, C. Clair, S. Swillens, M. Claret, and L. Combettes, “Mechanism of receptor-oriented intercellular calcium wave propagation in hepatocytes,” FASEB J. FAJOEC14, 279–289 (2000).en_US
dc.identifier.citedreferenceB. Zimmermann and B. Walz, “Serotonin-induced intercellular calcium waves in salivary glands of the blowfly Calliphora erythrocephala,” J. Physiol. JPHYA7500, 17–28 (1997).en_US
dc.identifier.citedreferenceM. Wilkins and J. Sneyd, “Intercellular spiral waves of calcium,” J. Theor. Biol. JTBIAP19, 299–308 (1998).en_US
dc.identifier.citedreferenceD. I. Yule, E. Stuenkel, and J. A. Williams, “Intercellular calcium waves in rat pancreatic acini: mechanism of transmission,” Am. J. Physiol. AJPHAP271, C1285–C1294 (1996).en_US
dc.identifier.citedreferenceA. P. LeBeau, D. I. Yule, G. E. Groblewski, and J. Sneyd, “Agonist-dependent phosphorylation of the inositol 1,4,5-trisphosphate receptor: a possible mechanism for agonist-specific calcium oscillations in pancreatic acinar cells,” J. Gen. Physiol. JGPLAD113, 851–871 (1999).en_US
dc.identifier.citedreferenceJ. Sneyd, A. LeBeau, and D. I. Yule, “Traveling waves of calcium in pancreatic acinar cells: model construction and bifurcation analysis,” Physica D (in press) (2000).en_US
dc.identifier.citedreferenceJ. Sneyd, J. Keizer, and M. J. Sanderson, “Mechanisms of calcium oscillations and waves: a quantitative analysis,” FASEB J. FAJOEC9, 1463–1472 (1995b).en_US
dc.identifier.citedreferenceE. Doedel, “Software for continuation and bifurcation problems in ordinary differential equations,” California Institute of Technology (1986).en_US
dc.identifier.citedreferenceJ. C. Neu, “Chemical waves and the diffusive coupling of limit cycle oscillators,” SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. SMJMAP36, 509–515 (1979).en_US
dc.identifier.citedreferenceJ. Lechleiter, S. Girard, E. Peralta, and D. Clapham, “Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes,” Science SCIEAS252, 123–126 (1991).en_US
dc.identifier.citedreferenceM. S. Jafri and J. Keizer, “On the roles of Ca2+Ca2+ diffusion, Ca2+Ca2+ buffers and the endoplasmic reticulum in IP3IP3-induced Ca2+Ca2+ waves,” Biophys. J. BIOJAU69, 2139–2153 (1995).en_US
dc.identifier.citedreferenceM. S. Jafri and J. Keizer, “Agonist-induced calcium waves in oscillatory cells: a biological example of Burger’s equation,” Bull. Math. Biol. BMTBAP59, 1125–1144 (1997).en_US
dc.identifier.citedreferenceA. McKenzie and J. Sneyd, “On the formation and breakup of spiral waves of calcium,” Int. J. Bifurcation Chaos Appl. Sci. Eng. IJBEE48, 2003–2012 (1998).en_US
dc.identifier.citedreferenceG. B. Ermentrout and N. Kopell, “Frequency plateaus in a chain of weakly coupled oscillators,” SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. SMJMAP15, 215–237 (1984).en_US
dc.identifier.citedreferenceJ. P. Keener and J. Sneyd, Mathematical Physiology (Springer-Verlag, New York, 1998).en_US
dc.identifier.citedreferenceJ. D. Murray, Mathematical Biology (Springer-Verlag, Berlin, 1989).en_US
dc.identifier.citedreferenceD. Hansel, G. Mato, and C. Meunier, “Phase dynamics for weakly coupled Hodkin-Huxley neurons,” Europhys. Lett. EULEEJ23, 367–372 (1993).en_US
dc.identifier.citedreferenceN. Kopell and D. Somers, “Anti-phase solutions in relaxation oscillators coupled through excitatory interactions,” J. Math. Biol. JMBLAJ33, 261–280 (1995).en_US
dc.identifier.citedreferenceM. Kawato and R. Suzuki, “Two coupled neural oscillators as a model of the circadian pacemaker,” J. Theor. Biol. JTBIAP86, 547–575 (1980).en_US
dc.identifier.citedreferenceA. Sherman, “Anti-phase, asymmetric and aperiodic oscillations in excitable cells—I. Coupled bursters,” Bull. Math. Biol. BMTBAP56, 811–835 (1994).en_US
dc.identifier.citedreferenceV. Torre, “Synchronization of non-linear biochemical oscillators coupled by diffusion,” Biol. Cybern. BICYAF17, 137–144 (1975).en_US
dc.identifier.citedreferenceY.-X. Li and A. Goldbeter, “Oscillatory isozymes as the simplest model for coupled biochemical oscillators,” J. Theor. Biol. JTBIAP138, 149–174 (1989).en_US
dc.identifier.citedreferenceM. A. Taylor and I. G. Kevrekidis, “Some common dynamic features of coupled reacting systems,” Physica D PDNPDT51, 274–292 (1991).en_US
dc.identifier.citedreferenceD. G. Aronson, E. J. Doedel, and H. G. Othmer, “An analytical and numerical study of the bifurcations in a system of linearly-coupled oscillators,” Physica D PDNPDT25, 20–104 (1987).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.