Show simple item record

Design principles for elementary gene circuits: Elements, methods, and examples

dc.contributor.authorSavageau, Michael A.en_US
dc.date.accessioned2010-05-06T22:52:35Z
dc.date.available2010-05-06T22:52:35Z
dc.date.issued2001-03en_US
dc.identifier.citationSavageau, Michael A. (2001). "Design principles for elementary gene circuits: Elements, methods, and examples." Chaos 11(1): 142-159. <http://hdl.handle.net/2027.42/70891>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70891
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=12779449&dopt=citationen_US
dc.description.abstractThe control of gene expression involves complex circuits that exhibit enormous variation in design. For years the most convenient explanation for these variations was historical accident. According to this view, evolution is a haphazard process in which many different designs are generated by chance; there are many ways to accomplish the same thing, and so no further meaning can be attached to such different but equivalent designs. In recent years a more satisfying explanation based on design principles has been found for at least certain aspects of gene circuitry. By design principle we mean a rule that characterizes some biological feature exhibited by a class of systems such that discovery of the rule allows one not only to understand known instances but also to predict new instances within the class. The central importance of gene regulation in modern molecular biology provides strong motivation to search for more of these underlying design principles. The search is in its infancy and there are undoubtedly many design principles that remain to be discovered. The focus of this three-part review will be the class of elementary gene circuits in bacteria. The first part reviews several elements of design that enter into the characterization of elementary gene circuits in prokaryotic organisms. Each of these elements exhibits a variety of realizations whose meaning is generally unclear. The second part reviews mathematical methods used to represent, analyze, and compare alternative designs. Emphasis is placed on particular methods that have been used successfully to identify design principles for elementary gene circuits. The third part reviews four design principles that make specific predictions regarding (1) two alternative modes of gene control, (2) three patterns of coupling gene expression in elementary circuits, (3) two types of switches in inducible gene circuits, and (4) the realizability of alternative gene circuits and their response to phased environmental cues. In each case, the predictions are supported by experimental evidence. These results are important for understanding the function, design, and evolution of elementary gene circuits. © 2001 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent183143 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleDesign principles for elementary gene circuits: Elements, methods, and examplesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Microbiology and Immunology, University of Michigan Medical School, 5641 Medical Science Building II, Ann Arbor, Michigan 48109-0620en_US
dc.identifier.pmid12779449en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70891/2/CHAOEH-11-1-142-1.pdf
dc.identifier.doi10.1063/1.1349892en_US
dc.identifier.sourceChaosen_US
dc.identifier.citedreferenceF. Jacob and J. Monod, “Genetic regulatory mechanisms in the synthesis of proteins,” J. Mol. Biol. JMOBAK3, 318–356 (1961).en_US
dc.identifier.citedreferenceJ. E. Hoch and T. J. Silhavy, Two-Component Signal Transduction (American Society for Microbiology, Washington, DC, 1995).en_US
dc.identifier.citedreferenceM. A. Savageau, “Are there rules governing patterns of gene regulation?” in Theoretical Biology—Epigenetic and Evolutionary Order, edited by B. C. Goodwin and P. T. Saunders (Edinburgh University Press, Edinburgh, 1989), pp. 42–66.en_US
dc.identifier.citedreferenceS. A. Kauffman, The Origins of Order: Self-Organization and Selection in Evolution (Oxford University Press, New York, 1993).en_US
dc.identifier.citedreferenceK. E. Kürten and H. Beer, “Inhomogeneous Kauffman models at the borderline between order and chaos,” J. Stat. Phys. JSTPBS87, 929–935 (1997).en_US
dc.identifier.citedreferenceF. R. Blattner, G. Plunkett III, C. A. Bloch, N. T. Perna, V. Burland, M. Riley, J. Collado-Vides, J. D. Glasner, C. K. Rode, G. F. Mayhew, J. Gregor, N. W. Davis, H. A. Kirkpatrick, M. A. Goeden, D. J. Rose, B. Mau, and Y. Shao, “The complete genome sequence of Escherichia coli K-12,” Science SCIEAS277, 1453–1462 (1997).en_US
dc.identifier.citedreferenceD. Thieffry, H. Salgado, A. M. Huerta, and J. Collado-Vides, “Prediction of transcriptional regulatory sites in the complete genome sequence of Escherichia coli K-12,” Bioinformatics BOINFP14, 391–400 (1998).en_US
dc.identifier.citedreferenceJ. R. Beckwith and E. Zipser, Eds., The Lactose Operon (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1970).en_US
dc.identifier.citedreferenceC. H. Yuh, H. Bolouri, and E. H. Davidson, “Genomic cis-regulatory logic: Experimental and computational analysis of a sea urchin gene,” Science SCIEAS279, 1896–1902 (1998).en_US
dc.identifier.citedreferenceW. S. Hlavacek and M. A. Savageau, “Subunit structure of regulator proteins influences the design of gene circuitry: Analysis of perfectly coupled and completely uncoupled circuits,” J. Mol. Biol. JMOBAK248, 739–755 (1995).en_US
dc.identifier.citedreferenceW. S. Hlavacek and M. A. Savageau, “Rules for coupled expression of regulator and effector genes in inducible circuits,” J. Mol. Biol. JMOBAK255, 121–139 (1996).en_US
dc.identifier.citedreferenceF. C. Neidhardt and M. A. Savageau, “Regulation beyond the operon,” in Escherichia coli and Salmonella: Cellular and Molecular Biology, edited by F. C. Neidhardt et al. (ASM, Washington, DC, 1996), pp. 1310–1324.en_US
dc.identifier.citedreferenceA. Arkin, J. Ross, and H. H. McAdams, “Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells,” Genetics GENTAE149, 1633–1648 (1998).en_US
dc.identifier.citedreferenceM. A. Savageau, “Biochemical systems analysis II. The steady state solutions for an n-pool system using a power-law approximation,” J. Theor. Biol. JTBIAP25, 370–379 (1969).en_US
dc.identifier.citedreferenceM. A. Savageau, “Power-law formalism: A canonical nonlinear approach to modeling and analysis,” in World Congress of Nonlinear Analysts 92, edited by V. Lakshmikantham (de Gruyter, Berlin, 1996), Vol. 4, pp. 3323–3334.en_US
dc.identifier.citedreferenceM. A. Savageau and E. O. Voit, “Recasting nonlinear differential equations as S-systems: A canonical nonlinear form,” Math. Biosci. MABIAR87, 83–115 (1987).en_US
dc.identifier.citedreferenceA. Salvador, “Synergism analysis of biochemical systems. I. Conceptual framework,” Math. Biosci. MABIAR163, 105–129 (2000).en_US
dc.identifier.citedreferenceA. Salvador, “Synergism analysis of biochemical systems. II. Deviations from multiplicativity,” Math. Biosci. MABIAR163, 131–158 (2000).en_US
dc.identifier.citedreferenceE. O. Voit and M. A. Savageau, “Accuracy of alternative representations for integrated biochemical systems,” Biochemistry BICHAW26, 6869–6880 (1987).en_US
dc.identifier.citedreferenceA. Sorribas and M. A. Savageau, “Strategies for representing metabolic pathways within biochemical systems theory: Reversible pathways,” Math. Biosci. MABIAR94, 239–269 (1989).en_US
dc.identifier.citedreferenceY. Maki, D. Tominaga, M. Okamoto, W. Watanabe, and Y. Eguchi, “Development of a system for the inference of large scale genetic networks,” Pacific Symposium on Biocomputing ZZZZZZ6, 446–458 (2000).en_US
dc.identifier.citedreferenceM. A. Savageau, “Growth of complex systems can be related to the properties of their underlying determinants,” Proc. Natl. Acad. Sci. U.S.A. PNASA676, 5413–5417 (1979).en_US
dc.identifier.citedreferenceB. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1983).en_US
dc.identifier.citedreferenceM. Schroeder, Fractals, Chaos, Power Laws (Freeman, New York, 1991).en_US
dc.identifier.citedreferenceL. Strauss, Wave Generation and Shaping (McGraw–Hill, New York, 1960).en_US
dc.identifier.citedreferenceH. W. Bode, Network Analysis and Feedback Amplifier Design (Van Nostrand, Princeton, NJ, 1945).en_US
dc.identifier.citedreferenceM. A. Savageau, Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology (Addison-Wesley, Reading, MA, 1976).en_US
dc.identifier.citedreferenceE. O. Voit, Canonical Nonlinear Modeling: S-System Approach to Understanding Complexity (Van Nostrand Reinhold, New York, 1991).en_US
dc.identifier.citedreferenceN. V. Torres, E. O. Voit, and C. H. González-Alcón, “Optimization of nonlinear biotechnological processes with linear programming. Application to citric acid production in Aspergillus niger,” Biotechnol. Bioeng. BIBIAU49, 247–258 (1996).en_US
dc.identifier.citedreferenceT.-C. Ni and M. A. Savageau, “Model assessment and refinement using strategies from biochemical systems theory: Application to metabolism in human red blood cells,” J. Theor. Biol. JTBIAP179, 329–368 (1996).en_US
dc.identifier.citedreferenceD. C. Lewis, “A qualitative analysis of S-systems: Hopf bifurcations,” in Canonical Nonlinear Modeling. S-System Approach to Understanding Complexity, edited by E. O. Voit (Van Nostrand Reinhold, New York, 1991), pp. 304–344.en_US
dc.identifier.citedreferenceD. H. Irvine and M. A. Savageau, “Efficient solution of nonlinear ordinary differential equations expressed in S-system canonical form,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal. SJNAEQ27, 704–735 (1990).en_US
dc.identifier.citedreferenceS. A. Burns and A. Locascio, “A monomial-based method for solving systems of non-linear algebraic equations,” Int. J. Numer. Methods Eng. IJNMBH31, 1295–1318 (1991).en_US
dc.identifier.citedreferenceM. A. Savageau, “Finding multiple roots of nonlinear algebraic equations using S-system methodology,” Appl. Math. Comput. AMHCBQ55, 187–199 (1993).en_US
dc.identifier.citedreferenceM. A. Savageau, “The behavior of intact biochemical control systems,” Curr. Top. Cell. Regul. CTCRAE6, 63–130 (1972).en_US
dc.identifier.citedreferenceM. A. Savageau, “A theory of alternative designs for biochemical control systems,” Biomed. Biochim. Acta BBIADT44, 875–880 (1985).en_US
dc.identifier.citedreferenceR. Alves and M. A. Savageau, “Extending the method of mathematically controlled comparison to include numerical comparisons,” Bioinformatics BOINFP16, 786–798 (2000).en_US
dc.identifier.citedreferenceM. A. Savageau, “Design of molecular control mechanisms and the demand for gene expression,” Proc. Natl. Acad. Sci. U.S.A. PNASA674, 5647–5651 (1977).en_US
dc.identifier.citedreferenceM. A. Savageau, “Models of gene function: general methods of kinetic analysis and specific ecological correlates,” in Foundations of Biochemical Engineering: Kinetics and Thermodynamics in Biological Systems, edited by H. W. Blanch, E. T. Papoutsakis, and G. N. Stephanopoulos (American Chemical Society, Washington, DC, 1983), pp. 3–25.en_US
dc.identifier.citedreferenceM. A. Savageau, “Regulation of differentiated cell-specific functions,” Proc. Natl. Acad. Sci. U.S.A. PNASA680, 1411–1415 (1983).en_US
dc.identifier.citedreferenceV. I. Arnol’d, Catastrophe Theory (Springer-Verlag, New York, 1992).en_US
dc.identifier.citedreferenceA. Novick and M. Weiner, “Enzyme induction as an all-or-none phenomenon,” Proc. Natl. Acad. Sci. U.S.A. PNASA643, 553–566 (1957).en_US
dc.identifier.citedreferenceJ. R. Sadler and A. Novick, “The properties of repressor and the kinetics of its action,” J. Mol. Biol. JMOBAK12, 305–327 (1965).en_US
dc.identifier.citedreferenceE. M. Cooke, Escherichia coli and Man (Churchill Livingstone, London, 1974).en_US
dc.identifier.citedreferenceM. A. Savageau, “Demand theory of gene regulation: Quantitative development of the theory,” Genetics GENTAE149, 1665–1676 (1998).en_US
dc.identifier.citedreferenceM. A. Savageau, “Demand theory of gene regulation: Quantitative application to the lactose and maltose operons of Escherichia coli,” Genetics GENTAE149, 1677–1691 (1998).en_US
dc.identifier.citedreferenceJ. H. Bond and M. D. Levitt, “Quantitative measurement of lactose absorption,” Gastroenterology GASTAB70, 1058–1062 (1976).en_US
dc.identifier.citedreferenceJ.-R. Malagelada, J. S. Robertson, M. L. Brown, M. Remington, J. A. Duenes, G. M. Thomforde, and P. W. Carryer, “Intestinal transit of solid and liquid components of a meal in health,” Gastroenterology GASTAB87, 1255–1263 (1984).en_US
dc.identifier.citedreferenceJ. H. Cummings and H. S. Wiggins, “Transit through the gut measured by analysis of a single stool,” Gut GUTTAK17, 219–223 (1976).en_US
dc.identifier.citedreferenceJ. S. S. Gear, A. J. M. Brodribb, A. Ware, and J. T. Mann, “Fiber and bowel transit times,” Br. J. Nutr. BJNUAV45, 77–82 (1980).en_US
dc.identifier.citedreferenceM. A. Savageau, “Escherichia coli habitats, cell types, and molecular mechanisms of gene control,” Am. Nat. AMNTA4122, 732–744 (1983).en_US
dc.identifier.citedreferenceL. Hayflick, “The cellular basis for biological aging,” in Handbook of the Biology of Aging, edited by C. E. Finch and L. Hayflick (Van Nostrand Reinhold, New York, 1977), pp. 159–186.en_US
dc.identifier.citedreferenceH. I. Sears, I. Brownlee, and J. K. Uchiyama, “Persistence of individual strains of E. coli in the intestinal tract of man,” J. Bacteriol. JOBAAY59, 293–301 (1950).en_US
dc.identifier.citedreferenceH. I. Sears and I. Brownlee, “Further observations on the persistence of individual strains of Escherichia coli in the intestinal tract of man,” J. Bacteriol. JOBAAY63, 47–57 (1952).en_US
dc.identifier.citedreferenceD. A. Caugant, B. R. Levin, and R. K. Selander, “Genetic diversity and temporal variation in the E. coli population of a human host,” Genetics GENTAE98, 467–490 (1981).en_US
dc.identifier.citedreferenceS. Garges, “Activation of transcription in Escherichia coli: The cyclic AMP receptor protein,” in Transcription: Mechanisms and Regulation, edited by R. C. Conaway and J. W. Conaway (Raven, New York, 1994), pp. 343–352.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.