Show simple item record

Structural and luminescence characteristics of cycled submonolayer InAs/GaAs quantum dots with room-temperature emission at 1.3 μm

dc.contributor.authorKrishna, Sanjayen_US
dc.contributor.authorZhu, D.en_US
dc.contributor.authorXu, J.en_US
dc.contributor.authorLinder, Kojo K.en_US
dc.contributor.authorQasaimeh, Omaren_US
dc.contributor.authorBhattacharya, Pallab K.en_US
dc.contributor.authorHuffaker, D. L.en_US
dc.date.accessioned2010-05-06T22:53:08Z
dc.date.available2010-05-06T22:53:08Z
dc.date.issued1999-12-01en_US
dc.identifier.citationKrishna, S.; Zhu, D.; Xu, J.; Linder, K. K.; Qasaimeh, O.; Bhattacharya, P.; Huffaker, D. L. (1999). "Structural and luminescence characteristics of cycled submonolayer InAs/GaAs quantum dots with room-temperature emission at 1.3 μm." Journal of Applied Physics 86(11): 6135-6138. <http://hdl.handle.net/2027.42/70897>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70897
dc.description.abstractQuantum dots were grown by molecular beam epitaxy on GaAs substrates using a cycled submonolayer InAs/GaAs deposition technique. Their structural and luminescence characteristics have been compared with conventional self-organized dots. The room-temperature luminescence spectra are characterized by a ground state transition at 1.3 μm and additional transitions corresponding to excited states. Cross-sectional transmission electron microscopy indicates that no dislocations are formed if the total InAs thickness is less than 5–6 monolayers. Temperature dependence of the photoluminescence indicates that both types of quantum dots may have nonradiative defects, caused by segregation and related phenomena. © 1999 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent297570 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleStructural and luminescence characteristics of cycled submonolayer InAs/GaAs quantum dots with room-temperature emission at 1.3 μmen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSolid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109-2122en_US
dc.contributor.affiliationotherMicroelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Texas 78712-1084en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70897/2/JAPIAU-86-11-6135-1.pdf
dc.identifier.doi10.1063/1.371664en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceM. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa, Jpn. J. Appl. Phys., Part 1 JAPNDE35, 1273 (1996).en_US
dc.identifier.citedreferenceH. P. Xin and C. W. Tu, Appl. Phys. Lett. APPLAB72, 2442 (1998).en_US
dc.identifier.citedreferenceR. P. Mirin, J. P. Ibbetson, K. Nishi, A. C. Gossard, and J. E. Bowers, Appl. Phys. Lett. APPLAB67, 3795 (1997).en_US
dc.identifier.citedreferenceK. Mukai, N. Ohtsuka, M. Sugawara, and S. Yamazaki, Jpn. J. Appl. Phys., Part 2 JAPLD833, L1710 (1994).en_US
dc.identifier.citedreferenceE. Roan and K. Cheng, Appl. Phys. Lett. APPLAB59, 2688 (1991).en_US
dc.identifier.citedreferenceD. L. Huffaker and D. G. Deppe, Appl. Phys. Lett. APPLAB73, 520 (1998).en_US
dc.identifier.citedreferenceV. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Yu. Egorov, A. V. Lunev, B. V. Volovok, I. L. Krestnikov, Yu. G. Musikhin, N. A. Bert, P. S. Ko’pev, Zh. I. Alferov, Ledentsov, and D. Bimberg, Appl. Phys. Lett. APPLAB74, 2815 (1999).en_US
dc.identifier.citedreferenceK. Nishi, H. Saito, S. Sugou, and J-S. Lee, Appl. Phys. Lett. APPLAB74, 1111 (1999).en_US
dc.identifier.citedreferenceD. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, Appl. Phys. Lett. APPLAB73, 2564 (1998).en_US
dc.identifier.citedreferenceJ. C. Campbell, D. L. Huffaker, H. Deng, and D. G. Deppe, Electron. Lett. ELLEAK33, 1337 (1997).en_US
dc.identifier.citedreferenceI. Mukhametzanov, R. Heitz, J. Zeng, P. Chen, and A. Madhukar, Appl. Phys. Lett. APPLAB73, 1841 (1998).en_US
dc.identifier.citedreferenceK. Kamath, P. Bhattacharya, and J. Phillips, J. Cryst. Growth JCRGAE175/176, 720 (1997).en_US
dc.identifier.citedreferenceJ. Tersoff, Phys. Rev. Lett. PRLTAO81, 3183 (1998).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.