Show simple item record

Electron Relaxation and Molecular Vibrations: Triatomic Systems of the First‐Row Elements, the Methyl Radical, and Diazomethane and Ketene

dc.contributor.authorBurdett, Jeremyen_US
dc.date.accessioned2010-05-06T22:53:37Z
dc.date.available2010-05-06T22:53:37Z
dc.date.issued1970-03-15en_US
dc.identifier.citationBurdett, Jeremy (1970). "Electron Relaxation and Molecular Vibrations: Triatomic Systems of the First‐Row Elements, the Methyl Radical, and Diazomethane and Ketene." The Journal of Chemical Physics 52(6): 2983-2992. <http://hdl.handle.net/2027.42/70902>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70902
dc.description.abstractThe well‐known second‐order perturbation method is used to correlate the bond–bond interaction constants in ground and excited electronic states of triatomic systems of the first‐row elements, and unusual force constants in diazomethane and ketene with the effect of electron relaxation. The third‐ and fourth‐order perturbation schemes are used to determine qualitatively the contributions to the third‐ and fourth‐order parts of the vibrational potential function of carbon dioxide, by the electron relaxation effect. The fourth‐order theory is used to rationalize the negative anharmonicities observed in ketene, diazomethane, the methyl radical, and planar excited states of ammonia.en_US
dc.format.extent3102 bytes
dc.format.extent786047 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleElectron Relaxation and Molecular Vibrations: Triatomic Systems of the First‐Row Elements, the Methyl Radical, and Diazomethane and Keteneen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michigan 48104en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70902/2/JCPSA6-52-6-2983-1.pdf
dc.identifier.doi10.1063/1.1673427en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceR. F. W. Bader, Mol. Phys. 3, 137 (1960).en_US
dc.identifier.citedreferenceL. Salem, Chem. Phys. Letters 3, 99 (1969).en_US
dc.identifier.citedreferenceG. Herzberg, Molecular Spectra and Molecular Structure. III (D. Van Nostrand Co., Inc., Princeton, N.J. 1966), p. 345.en_US
dc.identifier.citedreferenceD. E. Milligan, M. E. Jacox, and A. M. Bass, J. Chem. Phys. 43, 3149 (1965).en_US
dc.identifier.citedreferenceJ. W. C. Johns, Can. J. Phys. 39, 1738 (1961).en_US
dc.identifier.citedreferenceJ. W. C. Johns, Can. J. Phys. 42, 1004 (1964).en_US
dc.identifier.citedreferenceI. C. Hisatsune and N. H. Suarez, Inorg. Chem. 3, 168 (1964).en_US
dc.identifier.citedreferenceL. Gausset, G. Herzberg, A. Lagerquist, and B. Rosen, Astrophys. J. 145, 45 (1965).en_US
dc.identifier.citedreferenceR. F. W. Bader, Can. J. Chem. 40, 1164 (1962).en_US
dc.identifier.citedreferenceM. E. Jacox, D. E. Milligan, N. G. Moll, and W. E. Thompson, J. Chem. Phys. 43, 3734 (1965).en_US
dc.identifier.citedreferenceD. E. Milligan and M. E. Jacox, J. Chem. Phys. 47, 5157 (1967). R. N. Dixon, Phil. Trans. Roy. Soc. (London) A252, 165 (1960).en_US
dc.identifier.citedreferenceD. E. Milligan and M. E. Jacox, J. Chem. Phys. 44, 2850 (1966).en_US
dc.identifier.citedreferenceD. E. Milligan and M. E. Jacox, J. Chem. Phys. 46, 703 (1967).en_US
dc.identifier.citedreferenceA. M. Bass and D. E. Mann, J. Chem. Phys. 36, 3501 (1962).en_US
dc.identifier.citedreferenceD. M. Dennison, Rev. Mod. Phys. 12, 175 (1940).en_US
dc.identifier.citedreferenceM. E. Jacox and D. E. Milligan, J. Chem. Phys. 47, 5146 (1967).en_US
dc.identifier.citedreferenceL. Andrews and G. C. Pimentel, J. Chem. Phys. 47, 3637 (1967).en_US
dc.identifier.citedreferenceG. Herzberg, Proc. Roy. Soc. (London) A262, 291 (1961).en_US
dc.identifier.citedreferenceR. W. Fessenden and R. H. Schuler, J. Chem. Phys. 39, 2147 (1963).en_US
dc.identifier.citedreferenceA. D. Walsh, J. Chem. Soc. 1953, 2266.en_US
dc.identifier.citedreferenceA. D. Walsh and P. A. Warsop, Trans. Faraday Soc. 57, 345 (1961).en_US
dc.identifier.citedreferenceC. B. Moore and G. C. Pimentel, J. Chem. Phys. 40, 329, 342 (1964).en_US
dc.identifier.citedreferenceC. B. Moore and G. C. Pimentel, J. Chem. Phys. 38, 2816 (1963).en_US
dc.identifier.citedreferenceJ. C. Decius, J. Chem. Phys. 45, 1069 (1966).en_US
dc.identifier.citedreferenceJ. K. Burdett, J. Chem. Phys. (to be published).en_US
dc.identifier.citedreferenceWe use the convention of Moore and Pimentel in labeling the B modes. This is not the convention suggested in Mulliken’s report [J. Chem. Phys. 23, 1997 (1955)] and used by Merer.27en_US
dc.identifier.citedreferenceA. J. Merer, Can. J. Phys. 42, 1242 (1964).en_US
dc.identifier.citedreferenceR. G. W. Norrish, H. G. Crone, and O. D. Saltmarsh, J. Chem. Soc. 1933, 1533.en_US
dc.identifier.citedreferenceP. G. Wilkinson and R. S. Mulliken, J. Chem. Phys. 23, 1895 (1955).en_US
dc.identifier.citedreferenceSee Ref 23.en_US
dc.identifier.citedreferenceS. M. Blinder, J. Chem. Phys. 35, 974 (1961) and references therein.en_US
dc.identifier.citedreferenceC. B. Moore and K. Rosengren, J. Chem. Phys. 44, 4108 (1966).en_US
dc.identifier.citedreferenceW. H. Fletcher and W. F. Arendale, J. Chem. Phys. 19, 1431 (1951).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.