Show simple item record

Ion temperature effects on ion charge‐state distributions of an electron cyclotron resonant ion source

dc.contributor.authorWhaley, D. R.en_US
dc.contributor.authorGetty, W. D.en_US
dc.date.accessioned2010-05-06T22:55:25Z
dc.date.available2010-05-06T22:55:25Z
dc.date.issued1990-06en_US
dc.identifier.citationWhaley, D. R.; Getty, W. D. (1990). "Ion temperature effects on ion charge‐state distributions of an electron cyclotron resonant ion source." Physics of Fluids B: Plasma Physics 2(6): 1195-1203. <http://hdl.handle.net/2027.42/70921>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70921
dc.description.abstractA method is described for determining ion cyclotron resonance (ICR) heating effects on multiply charged‐ion energy distributions using a Monte Carlo fit to experimental time‐of‐flight spectrometer data. The method is general but is used here specifically to separate the effects of plasma ambipolar potential spread and ion temperature in an electron cyclotron resonance (ECR) heated magnetic mirror ion source (MIMI) [Phys. Fluids 28, 3116 (1985)]. A steady‐state equilibrium model is also developed that models the relevant atomic processes occurring in MIMI plasmas. This model and the Monte Carlo analysis are used to relate the effect of midplane ICR heating on end loss ion charge state distributions to its effect on the confined ion distributions. The model allows for collisional, moderately collisional, and collisionless confinement, specific to each charge state in the distribution. Both experiment and modeling show that increased ion temperature causes a shift to lower‐Z ion populations in both the confined and end loss charge‐state distributions.en_US
dc.format.extent3102 bytes
dc.format.extent1121303 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/octet-stream
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleIon temperature effects on ion charge‐state distributions of an electron cyclotron resonant ion sourceen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Nuclear Engineering, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumDepartment of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70921/2/PFBPEI-2-6-1195-1.pdf
dc.identifier.doi10.1063/1.859256en_US
dc.identifier.sourcePhysics of Fluids B: Plasma Physicsen_US
dc.identifier.citedreferenceJ. Booske, F. Aldabe, R. Ellis, and W. Getty, J. Appl. Phys. 64, 1055 (1988), and references contained therein.en_US
dc.identifier.citedreferenceSee National Technical Information Service Document No. DE 84000517 (Calculation of Ion Charge‐State Distributions in ECR Ion Sources, UCRL‐53391, by H. West, Jr., Lawrence Livermore National Laboratory, 1982). Copies may be ordered from the National Technical Information Service, Springfield, Virginia 22161. The price is $15.95 plus a $3.00 handling fee. All orders must be prepaid.en_US
dc.identifier.citedreferenceJ. Booske, W. Getty, R. Gilgenbach, and R. Jong, Phys. Fluids 28, 3116 (1985).en_US
dc.identifier.citedreferenceD. R. Whaley, Ph.D. dissertation, University of Michigan, 1989.en_US
dc.identifier.citedreferenceJ. Howard, Plasma Phys. 23, 597 (1981).en_US
dc.identifier.citedreferenceD. Whaley, T. Goodman, and W. Getty, Rev. Sci. Instrum. 60, 358 (1989).en_US
dc.identifier.citedreferenceW. Selph and C. Garrett, in Reactor Shielding for Nuclear Engineers, edited by N. M. Schaeffer (U.S. Atomic Energy Commission, Oak Ridge, TN 1973), p. 207.en_US
dc.identifier.citedreferenceT. Rognlien and T. Cutler, Nucl. Fusion 20, 1003 (1980).en_US
dc.identifier.citedreferenceV. Pastukhov, Nucl. Fusion 14, 3 (1974).en_US
dc.identifier.citedreferenceD. Smith and C. Petty, Bull. Am. Phys. Soc. 31, 1511 (1986).en_US
dc.identifier.citedreferenceL. Spitzer, Jr., Physics of Fully Ionized Gases (Interscience, New York, 1962).en_US
dc.identifier.citedreferenceD. Post, R. Jensen, C. Tarter, W. Grasberger, and W. Lokke, Atom. Data Nucl. Data Tables 20, 397 (1977).en_US
dc.identifier.citedreferenceA. Mueller and E. Salzborn, Phys. Lett. A 62, 391 (1977).en_US
dc.identifier.citedreferenceG. Fuchs, IEEE Trans. Nucl. Sci. NS‐19, 160 (1972).en_US
dc.identifier.citedreferenceB. Schram, A. Boerboom, and J. Kistemacker, Physica 32, 185 (1966).en_US
dc.identifier.citedreferenceB. Schram, Physica 32, 197 (1966).en_US
dc.identifier.citedreferenceM. Van der Weil, T. El‐Sherbini, and L. Vriens, Physica 42, 411 (1969).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.