Show simple item record

Plasma flow and plasma–wall transition in Hall thruster channel

dc.contributor.authorKeidar, Michaelen_US
dc.contributor.authorBoyd, Iain D.en_US
dc.contributor.authorBeilis, Isak I.en_US
dc.date.accessioned2010-05-06T22:55:36Z
dc.date.available2010-05-06T22:55:36Z
dc.date.issued2001-12en_US
dc.identifier.citationKeidar, M.; Boyd, I. D.; Beilis, I. I. (2001). "Plasma flow and plasma–wall transition in Hall thruster channel." Physics of Plasmas 8(12): 5315-5322. <http://hdl.handle.net/2027.42/70923>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70923
dc.description.abstractIn this paper a model of the quasineutral plasma and the transition between the plasma and the dielectric wall in a Hall thruster channel is developed. The plasma is considered using a two-dimensional hydrodynamic approximation while the sheath in front of the dielectric surface is considered to be one dimensional and collisionless. The dielectric wall effect is taken into account by introducing an effective coefficient of the secondary electron emission (SEE), s. In order to develop a self-consistent model, the boundary parameters at the sheath edge (ion velocity and electric field) are obtained from the two-dimensional plasma bulk model. In the considered condition, i.e., ion temperature much smaller than that of electrons and significant ion acceleration in the axial direction, the presheath scale length becomes comparable to the channel width so that the plasma channel becomes an effective presheath. It is found that the radial ion velocity component at the plasma–sheath interface varies along the thruster channel from about 0.5Cs0.5Cs (Cs(Cs is the Bohm velocity) near the anode up to the Bohm velocity near the exit plane dependent on the SEE coefficient. In addition, the secondary electron emission significantly affects the electron temperature distribution along the channel. For instance in the case of s = 0.95,s=0.95, the electron temperature peaks at about 16 eV, while in the case of s = 0.8s=0.8 it peaks at about 30 eV. The predicted electron temperature is close to that measured experimentally. The model predictions of the dependence of the current–voltage characteristic of the E×BE×B discharge on the SEE coefficient are found to be consistent with experiment. © 2001 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent505189 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titlePlasma flow and plasma–wall transition in Hall thruster channelen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationotherElectrical Discharge and Plasma Laboratory, Fleischman Faculty of Engineering, Tel Aviv University, P. O. Box 39040, Tel Aviv 69978, Israelen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70923/2/PHPAEN-8-12-5315-1.pdf
dc.identifier.doi10.1063/1.1421370en_US
dc.identifier.sourcePhysics of Plasmasen_US
dc.identifier.citedreferenceV. Kim, J. Propul. Power JPPOEL14, 736 (1998).en_US
dc.identifier.citedreferenceR. J. Etherington and M. G. Haines, Phys. Rev. Lett. PRLTAO14, 1019 (1965).en_US
dc.identifier.citedreferenceG. S. Janes and R. S. Lowder, Phys. Fluids PFLDAS9, 1115 (1966).en_US
dc.identifier.citedreferenceA. V. Zharinov and Yu. S. Popov, Sov. Phys. Tech. Phys. SPTPA312, 208 (1967).en_US
dc.identifier.citedreferenceA. I. Morozov, Sov. Phys. Dokl. SPHDA910, 775 (1966).en_US
dc.identifier.citedreferenceV. V. Zhurin, H. R. Kaufman, and R. S. Robinson, Plasma Sources Sci. Technol. PSTEEU8, 1 (1999).en_US
dc.identifier.citedreferenceA. I. Morozov and V. V. Savelyev, in Review of Plasma Physics, edited by B. B. Kadomtsev and V. D. Shafranov (Consultants Bureau, New York, 2000), Vol. 21, p. 203.en_US
dc.identifier.citedreferenceE. Choueiri, 37th AIAA Joint Propulsion Conference, Salt Lake City, UT, 2001 (AIAA, Washington DC, 2001), AIAA-2001-3504; Phys. Plasmas PHPAEN8, 5025 (2001).en_US
dc.identifier.citedreferenceY. Raitses, J. Ashkenazy, G. Appelbaum, and M. Guelman, 25th International Conference on Electric Propulsion, Cleveland, OH (The Electric Rocket Propulsion Society, Worthington, OH, 1997), IEPC 97-056.en_US
dc.identifier.citedreferenceY. Raitses, L. Dorf, A. Litvak, and N. Fisch, J. Appl. Phys. JAPIAU88, 1263 (2000).en_US
dc.identifier.citedreferenceY. Raitses, D. Staack, A. Smirnov, A. A. Litvak, L. A. Dorf, T. Graves, and N. J. Fisch, in Ref. 8, AIAA-2001-3776.en_US
dc.identifier.citedreferenceD. Bohm, in The Characteristics of Electrical Discharges in Magnetic Field, edited by A. Guthry and R. K. Wakerling (McGraw–Hill, New York, 1949).en_US
dc.identifier.citedreferenceK. U. Riemann, J. Phys. D JPAPBE24, 493 (1991).en_US
dc.identifier.citedreferenceR. Chodura, Phys. Fluids PFLDAS25, 1628 (1982).en_US
dc.identifier.citedreferenceK. U. Riemann, Phys. Plasmas PHPAEN1, 552 (1994).en_US
dc.identifier.citedreferenceH. Schmitz, K. U. Reimann, and Th. Daube, Phys. Plasmas PHPAEN3, 2486 (1996).en_US
dc.identifier.citedreferenceM. Keidar, I. Beilis, R. L. Boxman, and S. Goldsmith Proceeding XXII ICPIG, Stevens Institute of Technology, Hoboken, NJ, 1995, Vol. 2 p. 157.en_US
dc.identifier.citedreferenceI. I. Beilis, M. Keidar, and S. Goldsmith, Phys. Plasmas PHPAEN4, 3461 (1997).en_US
dc.identifier.citedreferenceI. I. Beilis and M. Keidar, Phys. Plasmas PHPAEN5, 1545 (1998).en_US
dc.identifier.citedreferenceJ. M. Fife and M. Martinez-Sanchez, 24th International Conference on Electric Propulsion, Moscow, Russia, 1995 (The Electric Rocket Propulsion Society, Worthington, OH, 1995), IEPC-95-240.en_US
dc.identifier.citedreferenceJ. P. Bouef and L. Garrigues, J. Appl. Phys. JAPIAU84, 3541 (1998).en_US
dc.identifier.citedreferenceI. D. Boyd, L. Garrigues, J. Koo, and M. Keidar, 36th AIAA Joint Propulsion Conference, Huntsville, AL, 2000 (AIAA, Washington DC, 2000), AIAA-2000-3520.en_US
dc.identifier.citedreferenceI. Katz and M. Mandell, Bull. Am. Phys. Soc. BAPSA645, 165 (2000).en_US
dc.identifier.citedreferenceA. Fruchtman and N. J. Fisch, 34th AIAA Joint Propulsion Conference, Cleveland, OH, 1998 (AIAA, Washington DC, 1998), AIAA-1998-3500.en_US
dc.identifier.citedreferenceE. Ahedo, P. Martinez, and M. Martines-Sanches, in Ref. 22, AIAA-2000-3655.en_US
dc.identifier.citedreferenceK. Makowsky, Z. Peradzynski, N. Gascon, and M. Dudeck, 35th AIAA Joint Propulsion Conference, Los Angeles, CA, 1999 (AIAA, Washington DC, 1999), AIAA-99-2295.en_US
dc.identifier.citedreferenceS. Locke, U. Schumlak, and J. M. Fife, in Ref. 8, AIAA-01-3327.en_US
dc.identifier.citedreferenceI. I. Beilis, V. A. Bityurin, U. A. Vasiljeva, V. V. Kirillow, G. A. Lyubimov, S. A. Medin, A. E. Sheindlin, and B. Ya. Shumjatsky, MHD Energy Conversion. Physical and Technical Aspects, edited by V. A. Kirillin and A. E. Sheyndlin (Nauka, Moscow, 1983), 368 pp. English translation: (AIAA, New York, 1986).en_US
dc.identifier.citedreferenceV. A. Godyak and N. Sternberg, IEEE Trans. Plasma Sci. ITPSBD18, 159 (1990).en_US
dc.identifier.citedreferenceG. D. Hobbs and J. A. Wesson, Plasma Phys. PLPHBZ9, 85 (1967).en_US
dc.identifier.citedreferenceA. I. Morozov and V. V. Savel’ev, in Ref. 20, IEPC-95-161.en_US
dc.identifier.citedreferenceN. B. Meezan, W. A. Hargus, and M. A. Cappelli, Phys. Rev. E PLEEE863, 026410 (2001).en_US
dc.identifier.citedreferenceJ. M. Fife and S. Locke, AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January 2001 (AIAA, Washington DC, 2001), AIAA-2001-1137.en_US
dc.identifier.citedreferenceA. I. Morozov, Prikl. Mekh. Tekh. Fiz. ZPMFAF3, 19 (1968).en_US
dc.identifier.citedreferenceA. I. Morozov and V. V. Savel’ev, Plasma Phys. Rep. PPHREM27, 570 (2001).en_US
dc.identifier.citedreferenceV. I. Baranov, Yu. S. Nazarenko, V. A. Petrosov, A. I. Vasin, and Yu. M. Yashnov, in Ref. 9, IEPC-97-060.en_US
dc.identifier.citedreferenceA. I. Morozov and V. V. Savel’ev, Plasma Phys. Rep. PPHREM26, 219 (2000).en_US
dc.identifier.citedreferenceS. Kim, J. E. Foster, and A. D. Gallimore, 32nd AIAA Joint Propulsion Conference, Orlando, FL (AIAA, Washington DC, 1996), AIAA-96-2972, July 1996.en_US
dc.identifier.citedreferenceM. Keidar, I. Beilis, R L. Boxman, and S. Goldsmith, J. Phys. D JPAPBE29, 1973 (1996).en_US
dc.identifier.citedreferenceL. B. King, A. D. Gallimore, and C. M. Marrese, J. Propul. Power JPPOEL14, 327 (1998).en_US
dc.identifier.citedreferenceJ. P. Bugeat and C. Koppel, in Ref. 20, IEPC-95-35.en_US
dc.identifier.citedreferenceS. Bechu, G. Perot, N. Gascon, P. Lasgorceix, A. Hauser, and M. Dudeck, in Ref. 26, AIAA-99-2567.en_US
dc.identifier.citedreferenceA. M. Bishaev and V. Kim, Sov. Phys. Tech. Phys. SPTPA323, 1055 (1978).en_US
dc.identifier.citedreferenceJ. M. Haas and A. D. Gallimore, in Ref. 22, AIAA-00-3422.en_US
dc.identifier.citedreferenceHandbook of Chemistry and Physics, edited by R. C. Weast (The Chemical Rubber Co., Boca Raton, FL, 1965), p. E-138.en_US
dc.identifier.citedreferenceH. A. Kamal and N. Hershkowitz, 25th International Conference on Plasma Science, Raleigh, NC, 1998 (IEEE Nuclear and Plasma Science Society, Conference Record-Abstracts, IEEE Catalog No. 98CH36221), p. 166.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.