Show simple item record

Molecular Beam Measurement of the Hyperfine Structure of 133Cs19F

dc.contributor.authorEnglish, Thomas C.en_US
dc.contributor.authorZorn, Jens C.en_US
dc.date.accessioned2010-05-06T22:56:04Z
dc.date.available2010-05-06T22:56:04Z
dc.date.issued1967-11-15en_US
dc.identifier.citationEnglish, Thomas C.; Zorn, Jens C. (1967). "Molecular Beam Measurement of the Hyperfine Structure of 133Cs19F." The Journal of Chemical Physics 47(10): 3896-3903. <http://hdl.handle.net/2027.42/70928>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70928
dc.description.abstractThe magnitudes and signs of the hyperfine interaction constants for 133Cs19F in the J = 1, v = 0, 1, 2 states have been measured with a molecular beam electric resonance spectrometer. The results for v = 0 are: eQ1q1 = 1.2370(13) MHz, c1 = 0.70(7)kHz, c2 = 15.1(6)kHz, c3 = 0.92(12)kHz, c4 = 0.61(10)kHz. The numbers in parentheses are uncertainties in units of the last digit given. eQ1q1 is the quadrupole coupling constant for the cesium nucleus, c1 and c2 are the spin‐rotation coupling constants for the cesium and fluorine nuclei, respectively, and c3 and c4 are the coupling constants for the tensor and scalar parts of the nuclear spin—spin interaction. These constants are obtained from the radio‐frequency spectrum of CsF taken under veryweak‐field conditions (Edc = 1.5 V/cm; H<0.05 Oe); some previously ignored contributions of the fluorine spin—rotation interaction and the spin—spin interaction are clearly evident. The observed variation in eQ1q1 with vibrational state shows only qualitative agreement with theory. An appendix gives compact expressions for the very‐weak‐field hfs energy levels of a 1Σ molecule in which only one nucleus has a quadrupole moment.en_US
dc.format.extent3102 bytes
dc.format.extent637891 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleMolecular Beam Measurement of the Hyperfine Structure of 133Cs19Fen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumRandall Laboratory of Physics, The University of Michigan, Ann Arbor, Michiganen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70928/2/JCPSA6-47-10-3896-1.pdf
dc.identifier.doi10.1063/1.1701551en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceH. K. Hughes, Phys. Rev. 72, 614 (1947).en_US
dc.identifier.citedreferenceJ. W. Trischka, Phys. Rev. 74, 718 (1948); 76, 1365 (1949).en_US
dc.identifier.citedreferenceN. F. Ramsey, Molecular Beams (Oxford University Press, London, 1956), p. 206, 231.en_US
dc.identifier.citedreferenceG. Bemski, W. A. Nierenberg, and H. B. Silsbee, Phys. Rev. 98, 470 (1955).en_US
dc.identifier.citedreferenceF. Mehran, R. A. Brooks, and N. F. Ramsey, Phys. Rev. 141, 93 (1966).en_US
dc.identifier.citedreferenceA. Honig, M. Mandel, M. L. Stitch, and C. H. Townes, Phys. Rev. 96, 629 (1954).en_US
dc.identifier.citedreferenceG. Gräff and Ö. Runólfsson, Z. Physik 187, 140 (1965).en_US
dc.identifier.citedreferenceT. C. English, Ph.D. thesis, University of Michigan, 1966 (University Microfilms, Inc., Ann. Arbor, 1966).en_US
dc.identifier.citedreferenceJ. C. Zorn, T. C. English, J. T. Dickinson, and D. A. Stephenson, J. Chem. Phys. 45, 3731 (1966).en_US
dc.identifier.citedreferenceP. Kusch and V. W. Hughes, Encyclopedia of Physics (Springer‐Verlag, Berlin, 1959), Vol. 37∕1, p. 124. The Hamiltonian given in this article does not include the nuclear spin‐spin interaction in its most general form; this interaction is discussed by N. F. Ramsey, Phys. Rev. 91, 303 (1953) and C. Schlier, Fortschr. Physik 9, 455 (1961).en_US
dc.identifier.citedreferenceThe relation between c3c3 and c4,c4, and the quantities dTdT and dSdS of Gräff and Runólfsson (Ref. 7) is: c3  =  dT,c3=dT, c4  =  dS.c4=dS.en_US
dc.identifier.citedreferenceC. H. Townes and A. L. Schawlow, Microwave Spectroscopy (McGraw‐Hill Book Co., New York, 1955), pp. 15–16, 155–164, 517–521.en_US
dc.identifier.citedreferenceV. Hughes and L. Grabner, Phys. Rev. 79, 829 (1950). Diabatic transitions in the regions between the state selectors and the C field may permit the observation of rf‐induced transitions which do not satisfy the usual observability criterion; these were looked for but not found in the present experiment.en_US
dc.identifier.citedreferenceJ. C. Zorn, D. Stephenson, J. T. Dickinson, and T. C. English, J. Chem. Phys. 47, 3904 (1967), following paper.en_US
dc.identifier.citedreferenceI. Ozier, Ph.D. thesis, Harvard University, 1965 (unpublished); I. Ozier and N. F. Ramsey, Bull. Am. Phys. Soc. 11, 23 (1966).en_US
dc.identifier.citedreferenceS. E. Veazey and W. Gordy, Phys. Rev. 138, A1303 (1965).en_US
dc.identifier.citedreferenceR. M. Sternheimer, Phys. Rev. 80, 102 (1950); 84, 244 (1951); 146, 140 (1966). R. M. Sternheimer and H. M. Foley, Phys. Rev. 102, 731 (1956). Additional references on the subject may be found in Ref. 18. We are indebted to Dr. Sternheimer for his helpful comments on our work.en_US
dc.identifier.citedreferenceH. W. de Wijn, J. Chem. Phys. 44, 810 (1966).en_US
dc.identifier.citedreferenceFor the other alkali fluorides (Rb85F,Rb85F, K39F,K39F, NaF, Li7FLi7F), these comments also apply in slightly modified form: Δ due to antishielding is of the correct sign, but smaller in magnitude than the experimental values by 15%, typically (except NaF which gives exact agreement); the corrections due to mutual polarization are all 1% or less of (Δ)Sternheimer.(Δ)Sternheimer.en_US
dc.identifier.citedreferenceH. M. Foley, R. M. Sternheimer, and D. Tycko, Phys. Rev. 93, 734 (1954).en_US
dc.identifier.citedreferenceA. G. Makhanek, Opt. Spectry. (USSR) 9, 214 (1960).en_US
dc.identifier.citedreferenceG. Herzberg, Spectra of Diatomic Molecules (D. Van Nostrand Co., Inc., Princeton, N.J., 1950), pp. 90–94.en_US
dc.identifier.citedreferenceA. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, N.J., 1960), 2nd ed.en_US
dc.identifier.citedreferenceM. Rotenberg, R. Bivins, N. Metropolis, and J. K. Wooten, Jr., The 3‐j and 6‐j Symbols (The Technology Press, Cambridge, Mass., 1959).en_US
dc.identifier.citedreferenceH. J. Zeiger and D. I. Bolef, Phys. Rev. 85, 788 (1952). The second equation for the matrix element of Ia⋅IbIa⋅Ib on p. 797 contains a misprint; the factor (F1+Ia−J+1)1/2(F1+Ia−J+1)1∕2 which appears in the numerator of the right‐hand side of this equation should be replaced by (F1+Ia−J)1/2.(F1+Ia−J)1∕2.en_US
dc.identifier.citedreferenceJ. Bardeen and C. H. Townes, Phys. Rev. 73, 97 (1948).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.