Show simple item record

Contact-line dynamics and damping for oscillating free surface flows

dc.contributor.authorJiang, Leien_US
dc.contributor.authorPerlin, Marcen_US
dc.contributor.authorSchultz, William W.en_US
dc.date.accessioned2010-05-06T22:57:45Z
dc.date.available2010-05-06T22:57:45Z
dc.date.issued2004-03en_US
dc.identifier.citationJiang, Lei; Perlin, Marc; Schultz, William W. (2004). "Contact-line dynamics and damping for oscillating free surface flows." Physics of Fluids 16(3): 748-758. <http://hdl.handle.net/2027.42/70946>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70946
dc.description.abstractNew experimental data on the frequency and damping of Faraday water waves in glass tanks are presented to demonstrate the contact-line effect on free surface flows. We find a complicated nonlinear relationship between wave frequency and amplitude near contact lines: The amplitude dispersion for decaying standing waves directly progresses from a nonlinear regime due to large amplitude to a regime due to contact-line nonlinearity. The relative damping rate is also a function of the wave amplitude, increasing significantly at smaller wave amplitude. These results are discussed in relation to different formulations of contact-line conditions for oscillatory motions and free surface flows. A new model is proposed to explain the observed amplitude scaling in the frequency and damping rate, and to relate these behaviors to slip-length and other contact-line measurements by Ting and Perlin [J. Fluid Mech. 295, 263 (1995)]. © 2004 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent604032 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/octet-stream
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleContact-line dynamics and damping for oscillating free surface flowsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Naval Architecture and Marine Engineering and Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48105en_US
dc.contributor.affiliationumDepartment of Mechanical Engineering and Department of Naval Architecture and Marine Engineering, University of Michigan, Ann Arbor, Michigan 48105en_US
dc.contributor.affiliationotherRA3-254, Logic Technology Development, Intel Corporation, 2501 NW 229th Avenue, Hillsboro, Oregon 97124en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70946/2/PHFLE6-16-3-748-1.pdf
dc.identifier.doi10.1063/1.1644151en_US
dc.identifier.sourcePhysics of Fluidsen_US
dc.identifier.citedreferenceE. B. Dussan V., “The moving contact line: The slip boundary condition,” J. Fluid Mech. JFLSA777, 665 (1976).en_US
dc.identifier.citedreferenceR. G. Cox, “The dynamics of the spreading of liquids on a solid surface. 1. Viscous flow,” J. Fluid Mech. JFLSA7168, 169 (1986).en_US
dc.identifier.citedreferenceH. P. Greenspan, “On the motion of a small viscous droplet that wets a surface,” J. Fluid Mech. JFLSA784, 125 (1978).en_US
dc.identifier.citedreferenceL. H. Tanner, “The spreading of silicone oil drops on horizontal surfaces,” J. Phys. D JPAPBE12, 1473 (1979).en_US
dc.identifier.citedreferenceE. B. Dussan V., “On the spreading of liquids on solid surfaces: Static and dynamic contact lines,” Annu. Rev. Fluid Mech. ARVFA311, 371 (1979).en_US
dc.identifier.citedreferenceS. H. Davis, “Contact-line problems in fluid mechanics,” J. Appl. Mech. Trans. ASME ZZZZZZ50, 977 (1983).en_US
dc.identifier.citedreferenceP. G. de Gennes, “Wetting: Statics and dynamics,” Rev. Mod. Phys. RMPHAT57, 827 (1985).en_US
dc.identifier.citedreferenceT. D. Blake, “Dynamic contact angles and wetting kinetics,” in Wettability, edited by J. C. Berg (Dekker, New York, 1993), p. 251.en_US
dc.identifier.citedreferenceG. W. Young and S. H. Davis, “A plate oscillating across a liquid interface: Effects of contact-angle hysteresis,” J. Fluid Mech. JFLSA7174, 327 (1987).en_US
dc.identifier.citedreferenceL. M. Hocking, “The damping of capillary-gravity waves at a rigid boundary,” J. Fluid Mech. JFLSA7179, 253 (1987).en_US
dc.identifier.citedreferenceL. M. Hocking, “Waves produced by a vertically oscillating plate,” J. Fluid Mech. JFLSA7179, 267 (1987).en_US
dc.identifier.citedreferenceJ. W. Miles, “Capillary-viscous forcing of surface waves,” J. Fluid Mech. JFLSA7219, 635 (1990).en_US
dc.identifier.citedreferenceJ. W. Miles, “Capillary boundary layer for standing waves,” J. Fluid Mech. JFLSA7222, 197 (1991).en_US
dc.identifier.citedreferenceJ. W. Miles, “On surface waves with zero contact angle,” J. Fluid Mech. JFLSA7245, 485 (1992).en_US
dc.identifier.citedreferenceC. Ting and M. Perlin, “Boundary conditions in the vicinity of the contact line at a vertically oscillating upright plate: An experimental investigation,” J. Fluid Mech. JFLSA7295, 263 (1995).en_US
dc.identifier.citedreferenceG. H. Keulegan, “Energy dissipation in standing waves in rectangular basins,” J. Fluid Mech. JFLSA76, 33 (1959).en_US
dc.identifier.citedreferenceB. Cocciaro, S. Faetti, and C. Festa, “Experimental investigation of capillary effects on surface gravity waves: Non-wetting boundary conditions,” J. Fluid Mech. JFLSA7246, 43 (1993).en_US
dc.identifier.citedreferenceL. M. Hocking, “Rival contact-angle models and the spreading of drops,” J. Fluid Mech. JFLSA7239, 671 (1992).en_US
dc.identifier.citedreferenceP. Ehrhard and S. H. Davis, “Non-isothermal spreading of liquid drops on horizontal plates,” J. Fluid Mech. JFLSA765, 81 (1991).en_US
dc.identifier.citedreferenceL. Jiang, C. Ting, M. Perlin, and W. W. Schultz, “Moderate and steep Faraday waves: Instabilities, modulation and temporal asymmetries,” J. Fluid Mech. JFLSA7329, 275 (1996).en_US
dc.identifier.citedreferenceL. Jiang, M. Perlin, and W. W. Schultz, “Period tripling and energy dissipation of breaking standing waves,” J. Fluid Mech. JFLSA7369, 273 (1998).en_US
dc.identifier.citedreferenceD. M. Henderson, J. Hammack, P. Kumar, and D. Shah, “The effects of static contact angles on standing waves,” Phys. Fluids A PFADEB4, 2320 (1992).en_US
dc.identifier.citedreferenceC. Martel and E. Knobloch, “Damping of nearly inviscid water waves,” Phys. Rev. E PLEEE856, 5544 (1997).en_US
dc.identifier.citedreferenceD. M. Henderson and J. W. Miles, “Surface-wave damping in a circular cylinder with a fixed contact line,” J. Fluid Mech. JFLSA7285, 285 (1994).en_US
dc.identifier.citedreferenceT. B. Benjamin and J. C. Scott, “Gravity-capillary waves with edge constraints,” J. Fluid Mech. JFLSA792, 241 (1979).en_US
dc.identifier.citedreferenceM. Perlin and W. W. Schultz, “Capillary effects on surface waves,” Annu. Rev. Fluid Mech. ARVFA332, 241 (2000).en_US
dc.identifier.citedreferenceR. L. Hoffman, “A study of the advancing interface. I. Interface shape in liquid-gas systems,” J. Colloid Interface Sci. JCISA550, 228 (1975).en_US
dc.identifier.citedreferenceP. G. de Gennes, X. Hua, and P. Levinson, “Dynamics of wetting: Local contact angles,” J. Fluid Mech. JFLSA7212, 55 (1990).en_US
dc.identifier.citedreferenceC. C. Mei and L. F. Liu, “The damping of surface gravity waves in a bounded liquid,” J. Fluid Mech. JFLSA759, 239 (1973).en_US
dc.identifier.citedreferenceJ. W. Miles, “Surface-wave damping in closed basins,” Proc. R. Soc. London, Ser. A PRLAAZ297, 459 (1967).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.