Contact-line dynamics and damping for oscillating free surface flows
dc.contributor.author | Jiang, Lei | en_US |
dc.contributor.author | Perlin, Marc | en_US |
dc.contributor.author | Schultz, William W. | en_US |
dc.date.accessioned | 2010-05-06T22:57:45Z | |
dc.date.available | 2010-05-06T22:57:45Z | |
dc.date.issued | 2004-03 | en_US |
dc.identifier.citation | Jiang, Lei; Perlin, Marc; Schultz, William W. (2004). "Contact-line dynamics and damping for oscillating free surface flows." Physics of Fluids 16(3): 748-758. <http://hdl.handle.net/2027.42/70946> | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/70946 | |
dc.description.abstract | New experimental data on the frequency and damping of Faraday water waves in glass tanks are presented to demonstrate the contact-line effect on free surface flows. We find a complicated nonlinear relationship between wave frequency and amplitude near contact lines: The amplitude dispersion for decaying standing waves directly progresses from a nonlinear regime due to large amplitude to a regime due to contact-line nonlinearity. The relative damping rate is also a function of the wave amplitude, increasing significantly at smaller wave amplitude. These results are discussed in relation to different formulations of contact-line conditions for oscillatory motions and free surface flows. A new model is proposed to explain the observed amplitude scaling in the frequency and damping rate, and to relate these behaviors to slip-length and other contact-line measurements by Ting and Perlin [J. Fluid Mech. 295, 263 (1995)]. © 2004 American Institute of Physics. | en_US |
dc.format.extent | 3102 bytes | |
dc.format.extent | 604032 bytes | |
dc.format.mimetype | text/plain | |
dc.format.mimetype | application/octet-stream | |
dc.publisher | The American Institute of Physics | en_US |
dc.rights | © The American Institute of Physics | en_US |
dc.title | Contact-line dynamics and damping for oscillating free surface flows | en_US |
dc.type | Article | en_US |
dc.subject.hlbsecondlevel | Physics | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Department of Naval Architecture and Marine Engineering and Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48105 | en_US |
dc.contributor.affiliationum | Department of Mechanical Engineering and Department of Naval Architecture and Marine Engineering, University of Michigan, Ann Arbor, Michigan 48105 | en_US |
dc.contributor.affiliationother | RA3-254, Logic Technology Development, Intel Corporation, 2501 NW 229th Avenue, Hillsboro, Oregon 97124 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/70946/2/PHFLE6-16-3-748-1.pdf | |
dc.identifier.doi | 10.1063/1.1644151 | en_US |
dc.identifier.source | Physics of Fluids | en_US |
dc.identifier.citedreference | E. B. Dussan V., “The moving contact line: The slip boundary condition,” J. Fluid Mech. JFLSA777, 665 (1976). | en_US |
dc.identifier.citedreference | R. G. Cox, “The dynamics of the spreading of liquids on a solid surface. 1. Viscous flow,” J. Fluid Mech. JFLSA7168, 169 (1986). | en_US |
dc.identifier.citedreference | H. P. Greenspan, “On the motion of a small viscous droplet that wets a surface,” J. Fluid Mech. JFLSA784, 125 (1978). | en_US |
dc.identifier.citedreference | L. H. Tanner, “The spreading of silicone oil drops on horizontal surfaces,” J. Phys. D JPAPBE12, 1473 (1979). | en_US |
dc.identifier.citedreference | E. B. Dussan V., “On the spreading of liquids on solid surfaces: Static and dynamic contact lines,” Annu. Rev. Fluid Mech. ARVFA311, 371 (1979). | en_US |
dc.identifier.citedreference | S. H. Davis, “Contact-line problems in fluid mechanics,” J. Appl. Mech. Trans. ASME ZZZZZZ50, 977 (1983). | en_US |
dc.identifier.citedreference | P. G. de Gennes, “Wetting: Statics and dynamics,” Rev. Mod. Phys. RMPHAT57, 827 (1985). | en_US |
dc.identifier.citedreference | T. D. Blake, “Dynamic contact angles and wetting kinetics,” in Wettability, edited by J. C. Berg (Dekker, New York, 1993), p. 251. | en_US |
dc.identifier.citedreference | G. W. Young and S. H. Davis, “A plate oscillating across a liquid interface: Effects of contact-angle hysteresis,” J. Fluid Mech. JFLSA7174, 327 (1987). | en_US |
dc.identifier.citedreference | L. M. Hocking, “The damping of capillary-gravity waves at a rigid boundary,” J. Fluid Mech. JFLSA7179, 253 (1987). | en_US |
dc.identifier.citedreference | L. M. Hocking, “Waves produced by a vertically oscillating plate,” J. Fluid Mech. JFLSA7179, 267 (1987). | en_US |
dc.identifier.citedreference | J. W. Miles, “Capillary-viscous forcing of surface waves,” J. Fluid Mech. JFLSA7219, 635 (1990). | en_US |
dc.identifier.citedreference | J. W. Miles, “Capillary boundary layer for standing waves,” J. Fluid Mech. JFLSA7222, 197 (1991). | en_US |
dc.identifier.citedreference | J. W. Miles, “On surface waves with zero contact angle,” J. Fluid Mech. JFLSA7245, 485 (1992). | en_US |
dc.identifier.citedreference | C. Ting and M. Perlin, “Boundary conditions in the vicinity of the contact line at a vertically oscillating upright plate: An experimental investigation,” J. Fluid Mech. JFLSA7295, 263 (1995). | en_US |
dc.identifier.citedreference | G. H. Keulegan, “Energy dissipation in standing waves in rectangular basins,” J. Fluid Mech. JFLSA76, 33 (1959). | en_US |
dc.identifier.citedreference | B. Cocciaro, S. Faetti, and C. Festa, “Experimental investigation of capillary effects on surface gravity waves: Non-wetting boundary conditions,” J. Fluid Mech. JFLSA7246, 43 (1993). | en_US |
dc.identifier.citedreference | L. M. Hocking, “Rival contact-angle models and the spreading of drops,” J. Fluid Mech. JFLSA7239, 671 (1992). | en_US |
dc.identifier.citedreference | P. Ehrhard and S. H. Davis, “Non-isothermal spreading of liquid drops on horizontal plates,” J. Fluid Mech. JFLSA765, 81 (1991). | en_US |
dc.identifier.citedreference | L. Jiang, C. Ting, M. Perlin, and W. W. Schultz, “Moderate and steep Faraday waves: Instabilities, modulation and temporal asymmetries,” J. Fluid Mech. JFLSA7329, 275 (1996). | en_US |
dc.identifier.citedreference | L. Jiang, M. Perlin, and W. W. Schultz, “Period tripling and energy dissipation of breaking standing waves,” J. Fluid Mech. JFLSA7369, 273 (1998). | en_US |
dc.identifier.citedreference | D. M. Henderson, J. Hammack, P. Kumar, and D. Shah, “The effects of static contact angles on standing waves,” Phys. Fluids A PFADEB4, 2320 (1992). | en_US |
dc.identifier.citedreference | C. Martel and E. Knobloch, “Damping of nearly inviscid water waves,” Phys. Rev. E PLEEE856, 5544 (1997). | en_US |
dc.identifier.citedreference | D. M. Henderson and J. W. Miles, “Surface-wave damping in a circular cylinder with a fixed contact line,” J. Fluid Mech. JFLSA7285, 285 (1994). | en_US |
dc.identifier.citedreference | T. B. Benjamin and J. C. Scott, “Gravity-capillary waves with edge constraints,” J. Fluid Mech. JFLSA792, 241 (1979). | en_US |
dc.identifier.citedreference | M. Perlin and W. W. Schultz, “Capillary effects on surface waves,” Annu. Rev. Fluid Mech. ARVFA332, 241 (2000). | en_US |
dc.identifier.citedreference | R. L. Hoffman, “A study of the advancing interface. I. Interface shape in liquid-gas systems,” J. Colloid Interface Sci. JCISA550, 228 (1975). | en_US |
dc.identifier.citedreference | P. G. de Gennes, X. Hua, and P. Levinson, “Dynamics of wetting: Local contact angles,” J. Fluid Mech. JFLSA7212, 55 (1990). | en_US |
dc.identifier.citedreference | C. C. Mei and L. F. Liu, “The damping of surface gravity waves in a bounded liquid,” J. Fluid Mech. JFLSA759, 239 (1973). | en_US |
dc.identifier.citedreference | J. W. Miles, “Surface-wave damping in closed basins,” Proc. R. Soc. London, Ser. A PRLAAZ297, 459 (1967). | en_US |
dc.owningcollname | Physics, Department of |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.