Show simple item record

Quantum state transfer in double‐quantum‐well devices

dc.contributor.authorJakumeit, Jürgenen_US
dc.contributor.authorTutt, Marcelen_US
dc.contributor.authorPavlidis, Dimitrisen_US
dc.date.accessioned2010-05-06T23:01:37Z
dc.date.available2010-05-06T23:01:37Z
dc.date.issued1994-12-01en_US
dc.identifier.citationJakumeit, Jürgen; Tutt, Marcel; Pavlidis, Dimitris (1994). "Quantum state transfer in double‐quantum‐well devices." Journal of Applied Physics 76(11): 7428-7436. <http://hdl.handle.net/2027.42/70987>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70987
dc.description.abstractA Monte Carlo simulation of double‐quantum‐well (DQW) devices is presented in view of analyzing the quantum state transfer (QST) effect. Different structures, based on the AlGaAs/GaAs system, were simulated at 77 and 300 K and optimized in terms of electron transfer and device speed. The analysis revealed the dominant role of the impurity scattering for the QST. Different approaches were used for the optimization of QST devices and basic physical limitations were found in the electron transfer between the QWs. The maximum transfer of electrons from a high to a low mobility well was at best 20%. Negative differential resistance is hampered by the almost linear rather than threshold dependent relation of electron transfer on electric field. By optimizing the doping profile the operation frequency limit could be extended to 260 GHz. © 1994 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent1259283 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleQuantum state transfer in double‐quantum‐well devicesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumCenter for Space Terahertz Technology, Solid State Electronics Laboratory, Deparment of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, Michigan 48109‐2122en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70987/2/JAPIAU-76-11-7428-1.pdf
dc.identifier.doi10.1063/1.357969en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceK. Hess, H. Morkoç, H. Shichijo, and B. G. Streetman, Appl. Phys. Lett. 35, 469 (1979).en_US
dc.identifier.citedreferenceA. Kastalsky and S. Luryi, IEEE Electron. Dev. Lett. EDL-4, 334 (1989).en_US
dc.identifier.citedreferenceS. Luryi, A. Kastalsky, A. Gossard, and R. Hendel, IEEE Trans. Electron Devices ED-31, 832 (1984).en_US
dc.identifier.citedreferenceK. Hong and D. Pavlidis, J. Appl. Phys. 69, 2662 (1991).en_US
dc.identifier.citedreferenceS. W. Kirchoefer, R. Mango, and J. Comas, Appl. Phys. Lett. 44, 1054 (1984).en_US
dc.identifier.citedreferenceJ. M. Pond, S. W. Kirchoefer, and E. J. Cukauskas, Appl. Phys. Lett. 47, 1175 (1985).en_US
dc.identifier.citedreferenceN. Sawaki and I. Akasaki, Physica 134B, 494 (1985).en_US
dc.identifier.citedreferenceN. Sawaki, M. Suzuki, Y. Takagaki, H. Goto, I. Akasaki, H. Kano, Y. Tanaka, and M. Hashimoto, Superlatt. Microstruct. 2, 281 (1986).en_US
dc.identifier.citedreferenceH. Kano, Y. Tanaka, N. Sawaki, M. Hashimoto, and I. Igarashi, J. Cryst. Growth 81, 144 (1987).en_US
dc.identifier.citedreferenceN. Sawaki, M. Suzuki, E. Okuno, H. Goto, I. Akasaki, H. Kano, Y. Tanaka, and M. Hashimoto, Solid-State Electron. 31, 351 (1988).en_US
dc.identifier.citedreferenceJ. M. Bigelow and J. P. Leburton, Appl. Phys. Lett. 57, 795 (1990).en_US
dc.identifier.citedreferenceS. Adachi, J. Appl. Phys. 58, R1 (1985).en_US
dc.identifier.citedreferenceB. K. Ridley, J. Phys. C 15, 5899 (1982).en_US
dc.identifier.citedreferenceF. A. Riddoch and B. K. Ridley, J. Phys. C 16, 6971 (1983).en_US
dc.identifier.citedreferenceP. J. Price, J. Vac. Sci. Technol. 19, 599 (1981).en_US
dc.identifier.citedreferenceM. Nido, M. G. W. Alexander, W. W. Rühle, and K. Köhler, SPIE 1268, 177 (1990).en_US
dc.identifier.citedreferenceM. G. W. Alexander, M. Nido, W. W. Rühle, and K. Köhler, Phys. Rev. B 41, 12295 (1990).en_US
dc.identifier.citedreferenceK. Leo, J. Shah, E. O. Göbel, J. P. Gordon, and S. Schmitt-Rink, Semicond. Sci. Technol. 7, B394 (1992).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.