Show simple item record

Nature and distribution of electrically active defects in Si‐implanted and lamp‐annealed GaAs

dc.contributor.authorDhar, Sunandaen_US
dc.contributor.authorSeo, Kwang S.en_US
dc.contributor.authorBhattacharya, Pallab K.en_US
dc.date.accessioned2010-05-06T23:05:14Z
dc.date.available2010-05-06T23:05:14Z
dc.date.issued1985-12-01en_US
dc.identifier.citationDhar, Sunanda; Seo, Kwang S.; Bhattacharya, Pallab K. (1985). "Nature and distribution of electrically active defects in Si‐implanted and lamp‐annealed GaAs." Journal of Applied Physics 58(11): 4216-4220. <http://hdl.handle.net/2027.42/71025>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71025
dc.description.abstractThe nature and spatial distribution of deep levels arising from defects in device‐quality, Si‐implanted, and lamp‐annealed liquid encapsulated Czochralski GaAs have been investigated. The best activation and mobility values are obtained for annealing times and temperatures of 3–5 s and 900–950 °C, respectively. Further improvements are obtained for a two‐step annealing in which a second step at 840–850 °C for 15–40 s follows the main anneal step. From Hall measurements, average layer mobilities of 4000 cm2/V s and activation of 55–65% are obtained for a Si+ dose of 6.5×1012 cm−2 at 100 keV. Electrically active deep‐level traps were studied by sensitive deep‐level transient spectroscopy (DLTS) and optical DLTS techniques. A dominant 0.57‐eV electron trap, which is also present in furnace‐annealed GaAs, originates from implantation damage and is possibly related to VGa. Additional electron traps with activation energies of 0.35 and 0.40 eV are present only in lamp‐annealed GaAs. Commonly observed hole traps have activation energies of 0.27–1.1 eV. The origins of these centers are discussed. Trap densities in single‐step lamp‐annealed samples are extremely low in comparison with furnace‐annealed samples. Typical values of NT/n are 10−2–10−4. Concentrations are even lower in samples undergoing two‐step annealing. The spatial variation of trap density seems to be principally determined by the variation of defect density in the substrate. It is apparent that high‐quality implanted and annealed GaAs can be obtained by the two‐step lamp annealing procedure.en_US
dc.format.extent3102 bytes
dc.format.extent456317 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/octet-stream
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleNature and distribution of electrically active defects in Si‐implanted and lamp‐annealed GaAsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSolid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71025/2/JAPIAU-58-11-4216-1.pdf
dc.identifier.doi10.1063/1.335554en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceT. O. Sedgwick, J. Electrochem. Soc. 130, 484 (1983).en_US
dc.identifier.citedreferenceJ. Narayan and O. W. Holland, J. Appl. Phys. 56, 2913 (1984).en_US
dc.identifier.citedreferenceM. H. Badawi and J. Mun, Electron. Lett. 20, 125 (1984).en_US
dc.identifier.citedreferenceT. Ohuishi, Y. Yamaguchi, T. Inada, N. Yokoyama, and H. Nishi, IEEE Electron Device Lett. EDL‐5, 403 (1984).en_US
dc.identifier.citedreferenceY. Kajikawa, K. Mizuguchi, T. Murotani, K. Fujikawa, and T. Sonoda, J. Vac. Sci. Technol. B 2, 249 (1984).en_US
dc.identifier.citedreferenceP. Pearah, T. Henderson, J. Klem, H. Morkoc, B. Nilsson, O. Wu, A. W. Swanson, and D. R. Ch’en, J. Appl. Phys. 56, 1851 (1984).en_US
dc.identifier.citedreferenceS. Dhar, P. K. Bhattacharya, F.‐Y. Juang, W. P. Hong, and R. A. Sadler, IEEE Trans. Electron Devices (to be published).en_US
dc.identifier.citedreferenceD. E. Holmes, R. T. Chen, and J. Yang, Appl. Phys. Lett. 42, 419 (1983).en_US
dc.identifier.citedreferenceM. Kuzuhara, H. Kohzu, and Y. Takayama, IEDM. Dig. Tech. Papers, 170 (1982).en_US
dc.identifier.citedreferenceA. Chandra, C. E. C. Wood, D. W. Woodard, and L. F. Eastman, Solid State Electron. 22, 645 (1979).en_US
dc.identifier.citedreferenceB. Tell, R. F. Leheny, A. S. H. Liao, T. J. Bridges, E. G. Burkhardt, T. Y. Chang, and E. D. Beebe, Appl. Phys. Lett. 44, 438 (1984).en_US
dc.identifier.citedreferenceK. Kitahara, K. Nakai, and S. Shibatoni, J. Electrochem. Soc. 129, 880 (1982).en_US
dc.identifier.citedreferenceH. C. Casey, J. Electrochem. Soc. 114, 153 (1967).en_US
dc.identifier.citedreferenceA. K. Chin, A. R. Von Neida, and R. Caruso, J. Electrochem. Soc. 129, 2386 (1982).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.