Show simple item record

Coherent potential theory for interacting bands: Phonons and excitons in substitutionally disordered molecular crystals

dc.contributor.authorHong, Hwei‐kwanen_US
dc.contributor.authorKopelman, Raoulen_US
dc.date.accessioned2010-05-06T23:05:38Z
dc.date.available2010-05-06T23:05:38Z
dc.date.issued1973-03-15en_US
dc.identifier.citationHong, Hwei‐Kwan; Kopelman, Raoul (1973). "Coherent potential theory for interacting bands: Phonons and excitons in substitutionally disordered molecular crystals." The Journal of Chemical Physics 58(6): 2557-2568. <http://hdl.handle.net/2027.42/71029>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71029
dc.description.abstractA coherent potential approximation (CPA) theory for disordered molecular solids with interacting bands is reported here. This theory has a wide range of applications. Various examples of interacting bands can be cited, such as electronic states coupled via vibronic or spin‐orbit couplings, vibrational states with degeneracies in the gas phase or coupled by Fermi resonance, triplet magnetic sublevels coupled via exciton interactions, and phonons in general. The theory is developed using the self‐consistent condition with a single‐site and single‐band approximation. In particular, two approaches are adopted. In the first approach, a self‐energy is assigned for each subband. In the second approach, a common self‐energy is assumed for all the subbands. The two different approaches require different inputs to the theory. In one case, the entire dispersion relations of the pure system are called for; in the other, only the partial density‐of‐states functions for each degree of freedom are needed. It is also shown that in the limit of infinite dilution, the formalism reduces to the proper single‐impurity levels within the single‐band approximation.en_US
dc.format.extent3102 bytes
dc.format.extent919011 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleCoherent potential theory for interacting bands: Phonons and excitons in substitutionally disordered molecular crystalsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michigan 48104en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71029/2/JCPSA6-58-6-2557-1.pdf
dc.identifier.doi10.1063/1.1679538en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceFor general review and bibliographies see N. F. Mott, Advan. Phys. 16, 49 (1967); N. F. Mott and W. D. Twose, , 10, 107 (1961); J. Hori, Spectral Properties of Disordered Chains and Lattices (Pergamon, Oxford, England, 1968); A. A. Maradudin, E. W. Montroll, G. H. Weiss, and I. P. Ipatova, Solid State Physics Suppl. 3, 353 (1971).en_US
dc.identifier.citedreferenceM. Lax, Rev. Mod. Phys. 23, 287 (1951); Phys. Rev. 85, 621 (1952).en_US
dc.identifier.citedreferenceF. Yonezawa and T. Matsubara, Progr. Theoret. Phys. (Kyoto) 31, 357 (1964); 35, 357 (1966); 35, 759 (1966); 37, 1346 (1967).en_US
dc.identifier.citedreferenceP. Soven, Phys. Rev. 156, 809 (1967); 178, 1136 (1969).en_US
dc.identifier.citedreferenceD. W. Taylor, Phys. Rev. 156, 1017 (1967).en_US
dc.identifier.citedreferenceY. Onodera and Y. Toyozawa, J. Phys. Soc. Japan 24, 341 (1968).en_US
dc.identifier.citedreferenceH. K. Hong and G. W. Robinson, J. Chem. Phys. 52, 825 (1970); 54, 1369 (1971).en_US
dc.identifier.citedreferenceO. A. Dubovskii and Yu. V. Konobeev, Fiz. Tverd. Tela 12, 405 (1970), [Sov. Phys. Solid State 12, 321 (1970)].en_US
dc.identifier.citedreferenceJ. Hoshen and J. Jortner, Chem. Phys. Lett. 5, 351 (1970).en_US
dc.identifier.citedreferenceSee, for example, W. Cochran and G. S. Pawley, Proc. Roy. Soc. A 280, 1 (1964); G. S. Pawley, Phys. Stat. Sol. 20, 347 (1967); G. S. Pawley and S. J. Cyvin, J. Chem. Phys. 52, 4073 (1970); G. S. Pawley and E. A. Yeats, Solid State Commun. 7, 385 (1969).en_US
dc.identifier.citedreferenceR. Kopelman, J. Chem. Phys. 44, 3547 (1966); E. R. Bernstein, S. D. Colson, R. Kopelman, and G. W. Robinson, J. Chem. Phys. 47, 5596 (1968). See also Ref. 12.en_US
dc.identifier.citedreferenceE. R. Bernstein, S. D. Colson, R. Kopelman, and G. W. Robinson, J. Chem. Phys. 48, 5596 (1968); E. R. Bernstein, J. Chem. Phys. 50, 4842 (1969); E. R. Bernstein and G. W. Robinson, J. Chem. Phys. 49, 4962 (1968); E. R. Bernstein, S. D. Colson, D. S. Tinti, and G. W. Robinson, J. Chem. Phys. 48, 4632 (1968); R. Kopelman, J. Chem. Phys. 47, 3227 (1967).en_US
dc.identifier.citedreferenceC. A. Hutchison Jr., and B. W. Mangum, J. Chem. Phys. 29, 952 (1958); 32, 1261 (1958); 34, 908 (1961).en_US
dc.identifier.citedreferenceG. C. Nieman and G. W. Robinson, J. Chem. Phys. 39, 1298 (1963); 37, 2150 (1962); H. Sternlicht, G. C. Nieman, and G. W. Robinson, J. Chem. Phys. 39, 1610 (1963); J. L. Katz, J. Jortner, S.‐I. Choi, and S. A. Rice, J. Chem. Phys. 39, 1897 (1963).en_US
dc.identifier.citedreferenceB. S. Sommer and J. Jortner, J. Chem. Phys. 50, 187, 839 (1969).en_US
dc.identifier.citedreferenceB. Velicky, S. Kirkpatrick, and H. Ehrenreich, Phys. Rev. 175, 747 (1968); S. Kirkpatrick, B. Velicky, and H. Ehrenreich, Phys. Rev. B1, 3250 (1970).en_US
dc.identifier.citedreferenceSee Ref. 16 and also J. Hoshen and J. Jortner, J. Chem. Phys. 56, 933 (1972).en_US
dc.identifier.citedreferenceM. V. Klein, Phys. Rev. 131, 1500 (1963).en_US
dc.identifier.citedreferenceP. N. Sen and M. H. Cohen, Amorphous and Liquid Semiconductors, edited by M. H. Cohen and G. Lucovsky (North‐Holland, Amsterdam, 1972), p. 147.en_US
dc.identifier.citedreferenceH. K. Hong and R. Kopelman, J. Chem. Phys. 58, 384 (1973).en_US
dc.identifier.citedreferenceR. Kopelman, J. Chem. Phys. 47, 2631 (1967).en_US
dc.identifier.citedreferenceJ. Frenkel, Phys. Rev. 37, 17, 1276 (1931); A. S. Davydov, Theory of Molecular Excitons (McGraw‐Hill, New York, 1962); Usp. Fiz. Nauk 82, 393 (1964) [Sov. Phys. Usp. 7, 145 (1964)]; A. S. Davydov, Theory of Molecular Excitons (Plenum, New York, 1971).en_US
dc.identifier.citedreferenceNotice that we have included the diagonal elements in H0.H0. For an isolated band, it is usually possible to write the mixed crystal Hamiltonian as (see Ref. 16), H  =  D+W,H=D+W, where D contains only the diagonal elements and W contains only the off‐diagonal elements. Furthermore, the pure crystal Hamiltonians of both A and B (HA0HA0 and HB0HB0) contain W:HA0  =  ϵA1+W,W:HA0=ϵA1+W, and HB0  =  ϵB1+W.HB0=ϵB1+W. Thus, it is possible to diagonalize both HA0HA0 and HB0HB0 with the same set of Bα(k,j).Bα(k,j). This is not true for the case of interacting bands. Now, HA0  =  εA+W,HA0=εA+W, HB0  =  εB+W.HB0=εB+W. Although εAεA and εBεB still contain only diagonal elements, they are no longer simple constant multiples of the unit matrix. The Bαf(k,j)Bαf(k,j)’s are different for components A and B. In other words, the density‐of‐states functions for A and B are not congruent to each other. Under these circumstances, it is more convenient to decompose the mixed crystal Hamiltonian as we do in Eq. (3.3a). The Bαf(k,j)Bαf(k,j) used throughout later sections is understood to be associated with the host (A) and not the guest (B). The same thing is true for phonons discussed in Sec. IV.en_US
dc.identifier.citedreferenceS. D. Colson, R. Kopelman, and G. W. Robinson, J. Chem. Phys. 47, 27, 5462 (1967); G. W. Robinson, Ann. Rev. Phys. Chem. 31, 429 (1970).en_US
dc.identifier.citedreferenceHere, we have put ⟨n,α,fRn,α,f⟩  =  Rnαf.⟨n,α,fRn,α,f⟩=Rnαf. It should be pointed out that RnαfRnαf is independent of n, α. We can define Rf ≡ Rnαf.Rf≡Rnαf. Thus, when we take the trace of the Green’s function, we have TraceG  =  ∑n∑α∑f⟨n,α,fRn,α,f⟩  =  Nσ∑fRf,TraceG=∑n∑α∑f⟨n,α,fRn,α,f⟩=Nσ∑fRf, where σ is the total number of molecules per primitive cell. Similarly, the over‐all density‐of‐states function g(E) is given by g(E)  =  (1/NσF)Img(E)=(1∕NσF)Im TraceG  =  (1/F)∑fImRf,TraceG=(1∕F)∑fImRf, where F is the total number of degrees of freedom.en_US
dc.identifier.citedreferenceThere appears to be some confusion with regard to different definitions of self‐energies by different authors, particularly those defined in Refs. 6, 16, and the present paper. Direct comparison is impossible because we are dealing with multibands and, as explained in Ref. 23, we have to absorb the diagonal terms into H0H0 also. However, in the limit of one band only our definitions of self‐energies are related to those of other authors by Uf  =  ∑1−ϵA,Uf=∑1−ϵA, Uf  =  ∑2+CAϵA+CBϵB−ϵA  =  ∑2+CBΔf,Uf=∑2+CAϵA+CBϵB−ϵA=∑2+CBΔf, where ∑1∑1 is used in Ref. 16; ∑2∑2 is used in Ref. 6. In other words, from Eq. (3.11), we have also Uf′  =  ∑2.Uf′=∑2. Care must be taken in comparing our results with those in Ref. 16. For example, using the above relations, Eq. (3.13) is found to be equivalent to ∑1  =  CAϵA+CBϵB+CACBΔf2/(Rnαf−1−CAϵB−CBϵA+∑1),∑1=CAϵA+CBϵB+CACBΔf2∕(Rnαf−1−CAϵB−CBϵA+∑1), which is given in Ref. 16 as ∑1  =  ϵ+CACBΔf2/(Rnαf−1+ϵ+∑1),∑1=ϵ+CACBΔf2∕(Rnαf−1+ϵ+∑1), because by their definition, ϵA  =  −ϵBϵA=−ϵB and so −CAϵB−CBϵA  =  CAϵA+CBϵB  =  ϵ.−CAϵB−CBϵA=CAϵA+CBϵB=ϵ.en_US
dc.identifier.citedreferenceTheir formulation is more general. In principle, it can be applied to cases where no interchange symmetry exists. However, as we point out in the text, their assumptions are questionable.en_US
dc.identifier.citedreferenceG. F. Koster and J. C. Slater, Phys. Rev. 95, 1167 (1954); 94, 1208 (1954); G. F. Koster, Phys. Rev. 95, 1436 (1954).en_US
dc.identifier.citedreferenceH. K. Hong and R. Kopelman, J. Chem. Phys. 55, 724 (1971); 57, 3888 (1972).en_US
dc.identifier.citedreferenceF. J. Dyson, Phys. Rev. 92, 1331 (1953).en_US
dc.identifier.citedreferenceC. Domb, A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Phys. Rev. 115, 18, 24 (1959).en_US
dc.identifier.citedreferenceP. Dean, Proc. Phys. Soc. (London), 73, 4136 (1959); Proc. Roy. Soc. (London) A254, 507 (1960); A260, 2636 (1961); P. Dean and J. L. Martin, A259, 409 (1960); P. Dean and M. D. Bacon, A283, 64 (1965).en_US
dc.identifier.citedreferenceFor some theoretical calculations see Ref. 10. Experimental work on molecular crystals using inelastic neutron scattering were reported by P. A. Reynolds, J. K. Kjems, and J. W. White, J. Chem. Phys. 56, 2928 (1972), G. Dolling and B. M. Powell, Proc. Roy. Soc. (London) 319, 209 (1970), and others.en_US
dc.identifier.citedreferenceFor example, see A. A. Maradudin, E. W. Montroll, G. H. Weiss, and I. P. Ipatova, Solid State Phys. Suppl. 3, 65 (1971).en_US
dc.identifier.citedreferenceSee Ref. 34, p. 361.en_US
dc.identifier.citedreferenceFor example, see Ref. 34, p. 459.en_US
dc.identifier.citedreferenceE. B. Bernstein and G. W. Robinson, J. Chem. Phys. 49, 4962 (1968).en_US
dc.identifier.citedreferenceR. Kopelman, J. Chem. Phys. 47, 3227 (1967).en_US
dc.identifier.citedreferenceD. M. Hanson, R. Kopelman, and G. W. Robinson, J. Chem. Phys. 51, 212 (1969).en_US
dc.identifier.citedreferenceS. D. Colson, D. M. Hanson, R. Kopelman, and G. W. Robinson, J. Chem. Phys. 48, 2215 (1968).en_US
dc.identifier.citedreferenceD. M. Hanson, J. Chem. Phys. 52, 3409 (1970).en_US
dc.identifier.citedreferenceH. K. Hong and R. Kopelman, Phys. Rev. Lett. 25, 1030 (1970); J. Chem. Phys. 55, 724 (1971).en_US
dc.identifier.citedreferenceH. K. Hong and R. Kopelman, J. Chem. Phys. 55, 5380 (1971).en_US
dc.identifier.citedreferenceP. N. Prasad and R. Kopelman, J. Chem. Phys. 57, 863 (1972).en_US
dc.identifier.citedreferenceSee, for example, calculations by D. A. Oliver and S. H. Walmsley, Mol. Phys. 17, 617 (1969); also assignments by M. Ito and T. Shigeoka, Spectrochim. Acta 22, 1029 (1966).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.