Show simple item record

Self-assembled quantum dots: A study of strain energy and intersubband transitions

dc.contributor.authorLin, Yih-Yinen_US
dc.contributor.authorSingh, Jaspriten_US
dc.date.accessioned2010-05-06T23:06:28Z
dc.date.available2010-05-06T23:06:28Z
dc.date.issued2002-11-15en_US
dc.identifier.citationLin, Yih-Yin; Singh, Jasprit (2002). "Self-assembled quantum dots: A study of strain energy and intersubband transitions." Journal of Applied Physics 92(10): 6205-6210. <http://hdl.handle.net/2027.42/71038>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71038
dc.description.abstractIn this article we examine the strain energy and intersubband optical transitions in self-assembled dots on GaAs and InP substrates. On the GaAs substrate, in addition to the InAs/GaAs dots we examine strain compensated InAs/GaAsP dots on GaAs substrates. We find that the strain energy configuration profile shows that there is preference for certain dot sizes and shapes. Our calculated dot sizes agree well with experimental observations. We find that the addition of phosphorus in the covering matrix reduces the total strain energy of the system with little effects on the intersubband transition strength for the vertical incident light. The reduced strain energy should allow one to incorporate a large number of dot array stacks for devices such as lasers and detectors and thus increases the optical responses. Our studies for the InAs/InP system show that due to the lower strain mismatch there is no particular preference for dot sizes. The optical response for intersubband transitions is weaker and occurs at longer wavelengths in comparison to the InAs/GaAs dots. © 2002 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent112204 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleSelf-assembled quantum dots: A study of strain energy and intersubband transitionsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109-2122en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71038/2/JAPIAU-92-10-6205-1.pdf
dc.identifier.doi10.1063/1.1515124en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceS. Krishna, O. Quasaimeh, P. Bhattacharya, P. J. MaCann, and K. Namjou, Appl. Phys. Lett. APPLAB76, 3355 (2000).en_US
dc.identifier.citedreferenceH. Jiang and J. Singh, Physica E (Amsterdam) PELNFM2, 720 (1998).en_US
dc.identifier.citedreferenceO. Qasaimeh, K. Kamath, P. Bhattacharya, and J. Phillips, Appl. Phys. Lett. APPLAB72, 1275 (1998).en_US
dc.identifier.citedreferenceQ. Xie, A. Madhukar, P. Chen, and N. P. Kobayashi, Phys. Rev. Lett. PRLTAO75, 2542 (1995).en_US
dc.identifier.citedreferenceG. S. Solomon, J. A. Trezza, A. F. Marshall, and J. S. Harris, Jr., Phys. Rev. Lett. PRLTAO76, 952 (1996).en_US
dc.identifier.citedreferenceA. D. Andreev, J. R. Downes, D. A. Faux, and E. P. O’Reilly, J. Appl. Phys. JAPIAU86, 297 (1999).en_US
dc.identifier.citedreferenceM. Califano and P. Harrison, J. Appl. Phys. JAPIAU91, 389 (2002).en_US
dc.identifier.citedreferenceT. Benabbas, P. François, Y. Androussi, and A. Lefebvre, J. Appl. Phys. JAPIAU80, 2763 (1996).en_US
dc.identifier.citedreferenceP. N. Keating, Phys. Rev. PHRVAO145, 637 (1966).en_US
dc.identifier.citedreferenceR. M. Martin, Phys. Rev. B PRBMDO1, 4005 (1969).en_US
dc.identifier.citedreferenceM. Podgorny, M. T. Czyzyk, A. Balzarotti, P. Letardi, N. Motta, A. Kisiel, and M. Zimnal-Starnawska, Solid State Commun. SSCOA455, 413 (1985).en_US
dc.identifier.citedreferenceM. Grundmann, J. Christen, N. N. Ledentsov, J. Böhrer, D. Bimberg, S. S. Ruvimov, P. Werner, U. Richter, U. Gösele, J. Heydenreich, v. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kop’ev, and Zh. I. Alferov, Phys. Rev. Lett. PRLTAO74, 4043 (1995).en_US
dc.identifier.citedreferenceS. Fréchengues, N. Bertru, V. Drouot, B. Lambert, S. Robinet, S. Loualiche, D. Lacombe, and A. Ponchet, Appl. Phys. Lett. APPLAB74, 3356 (1999).en_US
dc.identifier.citedreferenceK. Nishi, H. Saito, and S. Sugou, Appl. Phys. Lett. APPLAB74, 1111 (1999).en_US
dc.identifier.citedreferenceJ. Bernard and A. Zunger, Appl. Phys. Lett. APPLAB65, 165 (1994).en_US
dc.identifier.citedreferenceF. Glas, J. Appl. Phys. JAPIAU66, 1667 (1989).en_US
dc.identifier.citedreferenceM. R. Weidmann and K. E. Newman, Phys. Rev. B PRBMDO45, 8388 (1996).en_US
dc.identifier.citedreferenceH. Jiang and J. Singh, Appl. Phys. Lett. APPLAB71, 3239 (1997).en_US
dc.identifier.citedreferenceC. G. Van De Walle, Phys. Rev. B PRBMDO39, 1871 (1989).en_US
dc.identifier.citedreferenceS. Krishna, J. Sabarinathan, P. Bhattacharya, B. Lita, and R. S. Goldman, J. Vac. Sci. Technol. B JVTBD918, 1502 (2000).en_US
dc.identifier.citedreferenceJ. K. Ekins-Daukes, J. Zhang, D. B. Bushnell, K. W. J. Barnham, M. Mazzer, and J. S. Roberts, in Proceedings of the 28th IEEE PV Specialists Conference, IEEE, USA, 2000, pp. 1273–1276.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.