Show simple item record

Beam breakup growth and reduction experiments in long‐pulse electron beam transport

dc.contributor.authorMenge, P. R.en_US
dc.contributor.authorGilgenbach, Ronald M.en_US
dc.contributor.authorLau, Y. Y.en_US
dc.contributor.authorBosch, R. A.en_US
dc.date.accessioned2010-05-06T23:10:26Z
dc.date.available2010-05-06T23:10:26Z
dc.date.issued1994-02-01en_US
dc.identifier.citationMenge, P. R.; Gilgenbach, R. M.; Lau, Y. Y.; Bosch, R. A. (1994). "Beam breakup growth and reduction experiments in long‐pulse electron beam transport." Journal of Applied Physics 75(3): 1258-1266. <http://hdl.handle.net/2027.42/71080>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71080
dc.description.abstractThe results of an experimental program whose sole objective is to investigate the cumulative beam breakup instability (BBU) in electron beam accelerators are presented. The BBU growth rate scalings are examined with regard to beam current, focusing field, cavity Q, and propagation distance. A microwave cavity array was designed and fabricated to excite and measure the cumulative BBU resulting from beam interactions with the deflecting TM110 cavity mode. One phase of this experiment used high Q(≊1000) cavities with relatively large frequency spread (Δf/f0≊0.1%). The observed TM110 mode microwave growth between an upstream (second) and a downstream (tenth) cavity indicated BBU growth of 26 dB for an electron beam of kinetic energy of 750 keV, 45 A, and focused by a 1.1 kG solenoidal field. At beam currents of less than 100 A the experiments agreed well with a two‐dimensional continuum theory; the agreement was worse at higher beam currents (≳100 A) due to beam loading. The second‐phase experiments used lower Q(≊200) cavities with relatively low frequency spread (Δf/f0≊0.03%). Theory and experiment agreed well for beam currents up to 220 A. Distance scaling experiments were also performed by doubling the propagation length. Instability growth reduction experiments using the technique of external cavity coupling resulted in a factor of four decrease in energy in BBU growth when seven internal beam cavities were coupled by microwave cable to seven identical external dummy cavities. A theory invoking power sharing between the internal beam cavities and the external dummy cavities was used to explain the experimental reduction with excellent agreement using an equivalent circuit model.en_US
dc.format.extent3102 bytes
dc.format.extent1208612 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleBeam breakup growth and reduction experiments in long‐pulse electron beam transporten_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumNuclear Engineering Department, Intense Energy Beam Interaction Laboratory, University of Michigan, Ann Arbor, Michigan 48109‐2104en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71080/2/JAPIAU-75-3-1258-1.pdf
dc.identifier.doi10.1063/1.356429en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceW. K. H. Panofsky and M. Bander, Rev. Sci. Instrum. 39, 206 (1968); A. W. Chao, B. Richter, and C. Y. Yao, Nuc. Instrum. Methods 178, 1 (1980).en_US
dc.identifier.citedreferenceR. Helm and G. Loew, in Linear Accelerators, edited by P. M. Lapostelle and A. L. Septier (North-Holland, Amsterdam, 1970), Chap. B. 1.4, p. 173;A. W. Chao, Physics of Collective Beam Instabilities in High Energy Accelerators (Wiley, New York, 1993), p. 136.en_US
dc.identifier.citedreferenceP. R. Menge, R. M. Gilgenbach, and R. A. Bosch, Appl. Phys. Lett. 61, 642 (1992).en_US
dc.identifier.citedreferenceP. R. Menge, R. M. Gilgenbach, and Y. Y. Lau, Phys. Rev. Lett. 69, 2372 (1992).en_US
dc.identifier.citedreferenceV. K. Neil, L. S. Hall, and R. K. Cooper, Part. Accel. 9, 213 (1979).en_US
dc.identifier.citedreferenceG. J. Caporaso, F. Rainer, W. E. Martin, D. S. Prono, and A. G. Cole, Phys. Rev. Lett. 57, 1591 (1986).en_US
dc.identifier.citedreferenceY. Y. Lau, Phys. Rev. Lett. 63, (11), 1141, 2433E (1989).en_US
dc.identifier.citedreferenceR. M. Gilgenbach, L. D. Horton, R. F. Lucey, Jr., S. Bidwell, M. Cuneo, J. Miller, and L. Smutek, in Digest of the 5th IEEE Pulsed Power Conference (IEEE, New York, 1985), p. 126.en_US
dc.identifier.citedreferenceV. K. Neil and R. K. Cooper, Part. Accel. 1, 111 (1970).en_US
dc.identifier.citedreferenceD. G. Colombant and Y. Y. Lau, Appl. Phys. Lett. 55, 27 (1989).en_US
dc.identifier.citedreferenceR. A. Bosch, P. R. Menge, and R. M. Gilgenbach, J. Appl. Phys. 71, 3091 (1992).en_US
dc.identifier.citedreferenceR. E. Shefer and G. Bekefi, Int. J. Electron. 51, 569 (1981).en_US
dc.identifier.citedreferenceR. L. Gluckstern, F. Neri, and R. K. Cooper, Part. Accel. 23, 37 (1988).en_US
dc.identifier.citedreferenceD. Chernin and A. Mondelli, Part. Accel. 24, 177 (1989).en_US
dc.identifier.citedreferenceK. A. Thompson and R. D. Ruth, Phys. Rev. D 41, 964 (1990); R. H. Miller et al., SLAC Pub. 5862, 1992.en_US
dc.identifier.citedreferenceC. L. Bohn and J. R. Delayen, Phys. Rev. A 25, 5964 (1992).en_US
dc.identifier.citedreferenceD. Colombant, Y. Y. Lau, and D. Chernin, Part. Accel. 35, 193 (1991).en_US
dc.identifier.citedreferenceD. G. Colombant and Y. Y. Lau, J. Appl. Phys. 72, 3874 (1992).en_US
dc.identifier.citedreferenceD. G. Colombant and Y. Y. Lau, Nuc. Instrum. Methods A 311, 1 (1992).en_US
dc.identifier.citedreferenceR. E. Collin, Foundations for Microwave Engineering (McGraw-Hill, New York, 1966), Chaps. 7 and 9.en_US
dc.identifier.citedreferenceR. A. Bosch, P. R. Menge, and R. M. Gilgenbach (unpublished).en_US
dc.identifier.citedreferenceP. R. Menge, Ph.D. dissertation, The University of Michigan, 1993.en_US
dc.identifier.citedreferenceP. W. Tuinenga, SPICE, A Guide to Circuit Simulation and Analysis Using PSpice (Prentice-Hall, Englewood Cliffs, NJ, 1988).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.