Show simple item record

Slanting of a Magnetically Stabilized Electric Arc in Transverse Supersonic Flow

dc.contributor.authorBond, Charles E.en_US
dc.date.accessioned2010-05-06T23:10:59Z
dc.date.available2010-05-06T23:10:59Z
dc.date.issued1966-04en_US
dc.identifier.citationBond, Charles E. (1966). "Slanting of a Magnetically Stabilized Electric Arc in Transverse Supersonic Flow." Physics of Fluids 9(4): 705-710. <http://hdl.handle.net/2027.42/71086>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71086
dc.description.abstractExperimental observations are presented which indicate the existence of a convective interaction mechanism affecting the direction and stability of electric current in a flowing gas. The observations were made of an electric arc confined in transverse supersonic flow by means of a nonuniform magnetic field mutually orthogonal with the freestream velocity field and the applied electric field. The positive column exhibits remarkable stability when allowed to slant across the applied electric field, approximately parallel to the freestream Mach line. The direction of slant is the Hall direction, cathode root downstream, but the magnitude of the slant angle does not appear to vary with the Hall parameter ωeτe. At the Mach numbers investigated, 2.0, 2.5, and 3.5, the inclination of the stable arc to the freestream is near the Mach angle, which is near the angle corresponding to a maximum in the discharge parameter E∥∕Ps, the ratio of parallel component of electric field to pressure at the upstream boundary of the arc. Under conditions where the column could not assume its characteristic slant angle, a highly unstable discharge was observed.en_US
dc.format.extent3102 bytes
dc.format.extent547629 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleSlanting of a Magnetically Stabilized Electric Arc in Transverse Supersonic Flowen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumThe University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationotherThe University of Illinois, Urbana, Illinoisen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71086/2/PFLDAS-9-4-705-1.pdf
dc.identifier.doi10.1063/1.1761736en_US
dc.identifier.sourcePhysics of Fluidsen_US
dc.identifier.citedreferenceC. E. Bond, Ph.D. dissertation, University of Michigan (1964).en_US
dc.identifier.citedreferenceC. E. Bond, AIAA J. 3, 142 (1965).en_US
dc.identifier.citedreferenceC. E. Bond and A. M. Kuethe, AGARDograph 84, 935 (1964).en_US
dc.identifier.citedreferenceP. E. Secker and A. E. Guile, Nature 181, 1615 (1958).en_US
dc.identifier.citedreferenceA. E. Guile, T. J. Lewis, and S. F. Mehta, Brit. J. Appl. Phys. 8, 444 (1957).en_US
dc.identifier.citedreferenceA. E. Guile, T. J. Lewis, and S. F. Mehta, Nature 179, 1023 (1957).en_US
dc.identifier.citedreferenceI. Gönenc, Elektrotech. Z. A81, 132 (1960).en_US
dc.identifier.citedreferenceA. E. Guile and S. F. Mehta, Proc. Inst. Elec. Engrs. (London) A104, 533 (1957).en_US
dc.identifier.citedreferenceP. E. Secker, A. E. Guile, and P. S. Caton, Brit. J. Appl. Phys. 13, 282 (1962).en_US
dc.identifier.citedreferenceP. E. Secker, Ionization Phenomena in Gases (North‐Holland Publishing Company, Amsterdam, 1959), Vol. 1, p. 768.en_US
dc.identifier.citedreferenceA. Eidinger and W. Rieder, Arch. Elektrotech. 43, 94 (1957).en_US
dc.identifier.citedreferenceP. E. Secker and A. E. Guile, Proc. Inst. Elec. Engrs. (London) A106, 311 (1959).en_US
dc.identifier.citedreferenceL. P. Winsor and T. H. Lee, Proc. AIEE 75, 143 (1956).en_US
dc.identifier.citedreferenceA. E. Guile and P. E. Secker, J. Appl. Phys. 29, 1662 (1958).en_US
dc.identifier.citedreferenceT. J. Lewis and P. E. Secker, J. Appl. Phys. 32, 54 (1961).en_US
dc.identifier.citedreferenceA. E. Guile, T. J. Lewis, and P. E. Secker, Proc. Inst. Elec. Engrs. (London) C108, 463 (1961).en_US
dc.identifier.citedreferenceT. J. Lewis and P. E. Secker, Nature 186, 30 (1960).en_US
dc.identifier.citedreferenceP. E. Secker, Brit. J. Appl. Phys. 11, 385 (1960).en_US
dc.identifier.citedreferenceM. L. Féchant, Rev. Gen. Elec. 68, No. 9, 519 (1959).en_US
dc.identifier.citedreferenceE. Kuhnert, Elecktrotech. Z. A81, 401 (1960).en_US
dc.identifier.citedreferenceM. Angelopoulos, Elecktrotech. Z. A79, 572 (1958).en_US
dc.identifier.citedreferenceH. L. Smith and H. C. Early, University of Michigan Engineering Research Institute Report 2154‐3‐F (1954).en_US
dc.identifier.citedreferenceH. Rother, Ann. Physik 20, 230 (1957).en_US
dc.identifier.citedreferenceP. Thiene, Phys. Fluids 6, 1319 (1963).en_US
dc.identifier.citedreferenceJ. A. Fay, Phys. Fluids 7, 621 (1964).en_US
dc.identifier.citedreferenceL. A. King, Colloquium Spectroscopicum International (Pergamon Press, Inc., London, 1956), Vol. 6, p. 152.en_US
dc.identifier.citedreferenceM. N. Minorsky, J. Phys. Radium 9, 127 (1928).en_US
dc.identifier.citedreferenceL. B. Loeb, Basic Processes of Gaseous Electronics (University of California Press, Berkeley, California, 1960).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.