Show simple item record

Multilayer film stability

dc.contributor.authorSridhar, Narayanaswamyen_US
dc.contributor.authorRickman, J. M.en_US
dc.contributor.authorSrolovitz, David J.en_US
dc.date.accessioned2010-05-06T23:13:27Z
dc.date.available2010-05-06T23:13:27Z
dc.date.issued1997-11-15en_US
dc.identifier.citationSridhar, N.; Rickman, J. M.; Srolovitz, D. J. (1997). "Multilayer film stability." Journal of Applied Physics 82(10): 4852-4859. <http://hdl.handle.net/2027.42/71112>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71112
dc.description.abstractWe apply a linear stability analysis to examine the effect of misfit stress on the interface diffusion controlled morphological stability of multilayer microstructures. The stresses could be the result of misfit strains between the individual film layers and/or between film and substrate. We find that misfit between the layers in the film can destabilize the multilayer structure in cases where the thinner layer is elastically stiffer than the thicker layer. The rate at which these instabilities develop increase with increasing misfit and decreasing interfacial energy. Even when there is no misfit between layers, the misfit between the multilayer film and substrate can destabilize the interfaces. This type of instability occurs whether the thinner layers are stiffer or more compliant than the thicker ones. By appropriate choice of the elastic moduli mismatch between layers and relative layer thicknesses, the presence of an interlayer misfit can suppress the instability caused by the substrate misfit. We present stability diagrams that can be used to design stable, multilayer films using all of the degrees of freedom commonly available in multilayer film deposition. © 1997 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent210512 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleMultilayer film stabilityen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationotherDepartment of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71112/2/JAPIAU-82-10-4852-1.pdf
dc.identifier.doi10.1063/1.366347en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceW. Weisbusch and B. Vinter, Quantum Semiconductor Structures: Fundamentals and Applications (Academic, New York, 1991).en_US
dc.identifier.citedreferenceS. T. Chou, K. Y. Cheng, L. J. Chou, and K. C. Hsieh, J. Appl. Phys. JAPIAU78, 6270 (1995).en_US
dc.identifier.citedreferenceY. Arakawa and H. Sakaki, Appl. Phys. Lett. APPLAB40, 939 (1982).en_US
dc.identifier.citedreferenceE. P. O’Reilly and A. R. Adams, IEEE J. Quantum Electron. IEJQA730, 366 (1994).en_US
dc.identifier.citedreferenceL. B. DaSilva, T. W. Barbee, Jr., and R. Cauble, Appl. Opt. APOPAI34, 6389 (1995).en_US
dc.identifier.citedreferenceD. J. Srolovitz, S. M. Yalisove, and J. C. Bilello, Metall. Trans. A MTTABN26, 1805 (1995).en_US
dc.identifier.citedreferenceJ. M. Millunchick, T. D. Twesten, D. M. Follenstaedt, S. R. Lee, E. D. Jones, Y. Zhang, S. P. Ahrenkiel, and A. Mascarenhas, Appl. Phys. Lett. APPLAB70, 1402 (1997).en_US
dc.identifier.citedreferenceA. G. Cullis, D. J. Robbins, A. J. Pidduck, and P. W. Smith, J. Cryst. Growth JCRGAE123, 333 (1992).en_US
dc.identifier.citedreferenceA. Ponchet, A. Rocher, J. Y. Emery, C. Starck, and L. Goldstein, J. Appl. Phys. JAPIAU77, 1977 (1995).en_US
dc.identifier.citedreferenceR. J. Asaro and W. A. Tiller, Metall. Trans. 3, 1789 (1972).en_US
dc.identifier.citedreferenceM. A. Grinfeld, Sov. Phys. Dokl. SPHDA931, 831 (1986).en_US
dc.identifier.citedreferenceD. J. Srolovitz, Acta Metall. Mater. AMATEB37, 621 (1989).en_US
dc.identifier.citedreferenceD. J. Eaglesham and M. Cerullo, Phys. Rev. Lett. PRLTAO64, 1943 (1990).en_US
dc.identifier.citedreferenceW. H. Yang and D. J. Srolovitz, J. Mech. Phys. Solids JMPSA842, 1551 (1994).en_US
dc.identifier.citedreferenceD. E. Jesson, S. J. Pennycook, J. M. Baribeau, and D. C. Houghton, Phys. Rev. Lett. PRLTAO71, 1744 (1993).en_US
dc.identifier.citedreferenceN. Sridhar, J. M. Rickman, and D. J. Srolovitz, Acta Mater. ACMAFD45, 2715 (1997).en_US
dc.identifier.citedreferenceS. Socrate and D. M. Parks, Acta Metall. Mater. AMATEB41, 2185 (1992).en_US
dc.identifier.citedreferenceJ. D. Eshelby, in Inelastic Behavior of Solids, edited by M. F. Kanninen et al. (McGraw-Hill, New York, 1970), pp. 77–175.en_US
dc.identifier.citedreferenceW. W. Mullins, J. Appl. Phys. JAPIAU30, 77 (1959).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.