Show simple item record

Study of charge control and gate tunneling in a ferroelectric-oxide-silicon field effect transistor: Comparison with a conventional metal-oxide-silicon structure

dc.contributor.authorLin, Yih-Yinen_US
dc.contributor.authorZhang, Yifeien_US
dc.contributor.authorSingh, Jaspriten_US
dc.contributor.authorYork, Roberten_US
dc.contributor.authorMishra, Umesh K.en_US
dc.date.accessioned2010-05-06T23:13:56Z
dc.date.available2010-05-06T23:13:56Z
dc.date.issued2001-02-01en_US
dc.identifier.citationLin, Yih-Yin; Zhang, Yifei; Singh, Jasprit; York, Robert; Mishra, Umesh (2001). "Study of charge control and gate tunneling in a ferroelectric-oxide-silicon field effect transistor: Comparison with a conventional metal-oxide-silicon structure." Journal of Applied Physics 89(3): 1856-1860. <http://hdl.handle.net/2027.42/71117>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71117
dc.description.abstractIt is known that conventional metal-oxide-silicon (MOS) devices will have gate tunneling related problems at very thin oxide thicknesses. Various high-dielectric-constant materials are being examined to suppress the gate currents. In this article we present theoretical results of a charge control and gate tunneling model for a ferroelectric-oxide-silicon field effect transistor and compare them to results for a conventional MOS device. The potential of high polarization charge to induce inversion without doping and high dielectric constant to suppress tunneling current is explored. The model is based on a self-consistent solution of the quantum problem and includes the ferroelectric hysteresis response self-consistently. We show that the polarization charge associated with ferroelectrics can allow greater controllability of the inversion layer charge density. Also the high dielectric constant of ferroelectrics results in greatly suppressed gate current. © 2001 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent90291 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleStudy of charge control and gate tunneling in a ferroelectric-oxide-silicon field effect transistor: Comparison with a conventional metal-oxide-silicon structureen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109-2122en_US
dc.contributor.affiliationumApplied Physics Program, University of Michigan, Ann Arbor, Michigan 48109-2122en_US
dc.contributor.affiliationumDepartment of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109-2122en_US
dc.contributor.affiliationotherDepartment of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106-9560en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71117/2/JAPIAU-89-3-1856-1.pdf
dc.identifier.doi10.1063/1.1332425en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceY. Taur and T. Ning, Fundamentals of Modern VLSI Devices (Cambridge University Press, Cambridge, 1998), p. 200.en_US
dc.identifier.citedreferenceY. Zhang and J. Singh, J. Appl. Phys. JAPIAU85, 587 (1999).en_US
dc.identifier.citedreferenceY. Zhang, I. P. Smorchkova, C. R. Elsass, S. Keller, J. P. Ibbetson, S. Denbaars, U. K. Mishra, and J. Singh, J. Appl. Phys. JAPIAU87, 7981 (2000).en_US
dc.identifier.citedreferenceT. Chen, V. Balu, S. Katakam, J. Lee, and J. C. Lee, IEEE Trans. Electron Devices IETDAI46, 2304 (1999).en_US
dc.identifier.citedreferenceP. Padmini, T. R. Taylor, M. J. Lefevre, A. S. Nagra, J. S. Speck, and R. A. York, Appl. Phys. Lett. APPLAB75, 3186 (1999).en_US
dc.identifier.citedreferenceK. Aizawa and H. Ishiwara, Jpn. J. Appl. Phys., Part 1 JAPNDE33, 5178 (1994).en_US
dc.identifier.citedreferenceJ. Yu, Z. Hong, W. Zhou, G. Cao, J. Xie, and X. Li, Appl. Phys. Lett. APPLAB70, 490 (1997).en_US
dc.identifier.citedreferenceY. T. Kim and D. S. Shin, Appl. Phys. Lett. APPLAB71, 3507 (1997).en_US
dc.identifier.citedreferenceY. Ishioka et al., in Proceedings of the International Electron Devices Meeting (IEEE, New York, 1995), p. 903.en_US
dc.identifier.citedreferenceS. Yamamichi et al., in Ref. 9, p. 119.en_US
dc.identifier.citedreferenceK. P. Lee et al., in Ref. 9, p. 907.en_US
dc.identifier.citedreferenceE. Fujii et al., in Ref. 9, p. 267.en_US
dc.identifier.citedreferenceK. Eisenbeiser, J. M. Finder, Z. Yu, J. Ramdani, J. A. Curless, J. A. Hallmark, R. Droopad, W. J. Ooms, L. Salem, S. Bradshaw, and C. D. Overgaard, Appl. Phys. Lett. APPLAB76, 1324 (2000).en_US
dc.identifier.citedreferenceS. Gasiorowicz, Quantum Physics (Wiley, New York, 1974), p. 86.en_US
dc.identifier.citedreferenceJ. Robertson and W. L. Warren, Mater. Res. Soc. Syno, Oric.ZZZZZZ 361, 123 (1995).en_US
dc.identifier.citedreferenceK. Abe and S. Komatsu, J. Appl. Phys. JAPIAU77, 6461 (1995).en_US
dc.identifier.citedreferenceC. S. Hwang, B. T. Lee, C. S. Kang, K. H. Lee, H. Cho, H. Hideki, W. D. Kim, S. I. Lee, and M. Y. Lee, J. Appl. Phys. JAPIAU85, 287 (1999).en_US
dc.identifier.citedreferenceK. Amanuma, T. Mori, T. Hase, T. Sakuma, A. Ochi, and Y. Miyasaka, Jpn. J. Appl. Phys., Part 1 JAPNDE32, 4153 (1993).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.