Show simple item record

Nuclear spin relaxation due to paramagnetic species in solution: Effect of anisotropy in the zero field splitting tensor

dc.contributor.authorSharp, Robert R.en_US
dc.date.accessioned2010-05-06T23:14:53Z
dc.date.available2010-05-06T23:14:53Z
dc.date.issued1993-04-15en_US
dc.identifier.citationSharp, Robert R. (1993). "Nuclear spin relaxation due to paramagnetic species in solution: Effect of anisotropy in the zero field splitting tensor." The Journal of Chemical Physics 98(8): 6092-6101. <http://hdl.handle.net/2027.42/71127>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71127
dc.description.abstractThe NMR (nuclear magnetic resonance) paramagnetic relaxation enhancement (NMR‐PRE) that is produced by paramagnetic solutes in solution has been investigated theoretically with respect to the influence of zero field splitting (zfs) interactions in the electron spin Hamiltonian, in particular with respect to the effects of anisotropy in the zfs tensor. These effects are a physical consequence of the influence of the zfs on the motion of the electron spin vector S̄. When the zfs energy is large compared to the Zeeman energy (the zfs limit), the precessional motion of S̄ is quantized in the molecule‐fixed coordinate system that diagonalizes the zfs tensor. The uniaxial portion of the zfs tensor influences the NMR‐PRE primarily through its influence on the quantization axes of S̄; the characteristic behavior of the NMR‐PRE under the influence of a uniaxial zfs has been described in detail previously. Anisotropy in the zfs tensor induces oscillatory motion in Sz. This motion has a profound influence on the NMR‐PRE, the major part of which normally arises from low frequency components of the local magnetic field that are associated with Sz, rather than from the rapidly precessing local fields that are associated with the transverse components S±. For this reason, the NMR‐PRE is a sensitive function of zfs anisotropy, which acts to lower the NMR‐PRE below the value that occurs in the uniaxial situation. The magnitude of this effect depends on the ratio (E/D) of the anisotropic and uniaxial zfs parameters, on the reduced dipolar correlation time, and on the location of the nuclear spin in the molecular coordinate frame. A second physical effect of zfs anisotropy on the NMR‐PRE arises from a resonance between the electron spin precessional motion in the transverse plane with the precessional motion that is perpendicular to the transverse plane (the latter due to zfs anisotropy). Resonance of these motions, which occurs spin energy levels crossings, gives rise to low frequency transverse components of S̄ which result in a resonant increase in the NMR‐PRE within a restricted range of E/D ratios.en_US
dc.format.extent3102 bytes
dc.format.extent933445 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleNuclear spin relaxation due to paramagnetic species in solution: Effect of anisotropy in the zero field splitting tensoren_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71127/2/JCPSA6-98-8-6092-1.pdf
dc.identifier.doi10.1063/1.464848en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceI. Solomon, Phys. Rev. 99, 559 (1955).en_US
dc.identifier.citedreferenceN. Bloembergen, J. Chem. Phys. 27, 572, 595 (1957).en_US
dc.identifier.citedreferenceN. Bloembergen and L. O. Morgan, J. Chem. Phys. 34, 842 (1961).en_US
dc.identifier.citedreferenceR. A. Dwek, NMR in Biochemistry (Oxford University, Oxford, 1971).en_US
dc.identifier.citedreferenceR. R. Sharp, J. Chem. Phys. 98, 912 (1993).en_US
dc.identifier.citedreferenceR. R. Sharp, J. Chem. Phys. 98, 2507 (1993).en_US
dc.identifier.citedreferenceR. R. Sharp, J. Chem. Phys. 93, 6921 (1990).en_US
dc.identifier.citedreferenceT. Bayburt and R. R. Sharp, J. Chem. Phys. 92, 5892 (1990).en_US
dc.identifier.citedreferenceR. R. Sharp, J. Magn. Reson. 100, 491 (1992).en_US
dc.identifier.citedreferenceN. Benetis, J. Kowaleski, L. Nordenskiold, H. Wennerstrom, and P.-O. Westlund, Molec. Phys. 48, 329 (1983).en_US
dc.identifier.citedreferenceN. Benetis and J. Kowaleski, J. Magn. Reson. 65, 13 (1985).en_US
dc.identifier.citedreferenceN. Benetis, J. Kowalewski, L. Nordenskiold, H. Wennerstrom, and P.-O. Westlund, Mol. Phys. 50, 515 (1983).en_US
dc.identifier.citedreferenceU. Lindner, Ann. Phys. (Leipzig) 16, 319 (1965).en_US
dc.identifier.citedreferenceH. L. Friedman, M. Holz, and H. G. Hertz, J. Chem. Phys. 70, 3369 (1979).en_US
dc.identifier.citedreferenceU. Lindner, Ann. Phys. (Leipzig) 16, 319 (1965).en_US
dc.identifier.citedreferenceD. T. Pegg and D. M. Doddrell, Aust. J. Chem. 31, 475 (1978).en_US
dc.identifier.citedreferenceD. T. Pegg, D. M. Doddrell, M. R. Bendall, and A. K. Gregson, Aust. J. Chem. 29, 1885 (1976).en_US
dc.identifier.citedreferenceH. L. Friedman, M. Holz, and H. G. Hertz, J. Chem. Phys. 70, 3369 (1979).en_US
dc.identifier.citedreferenceT. R. Chen, S.-J. Den, and L.-P. Hwang, Proc. Natl. Sci. Counc. (Rep. of China) (A) 8, 224 (1984).en_US
dc.identifier.citedreferenceL.-P. Hwang and C.-Y. Ju, J. Chem. Phys. 83, 3775 (1985).en_US
dc.identifier.citedreferenceP.-L. Wang, J.-H. Lee, S.-M. Huang, and L.-P. Hwang, J. Magn. Reson. 73, 277 (1987).en_US
dc.identifier.citedreferenceN. Benetis, J. Kowalewski, L. Nordenskiold, H. Wennerstrom, and P.-O. Westlund, Mol. Phys. 48, 329 (1983).en_US
dc.identifier.citedreferenceP.-O. Westlund, H. Wennerstrom, L. Nordenskiold, J. Kowalewski, and N. Benetis, J. Magn. Reson. 59, 91 (1984).en_US
dc.identifier.citedreferenceN. Benetis and J. Kowaleski, J. Magn. Reson. 65, 13 (1985).en_US
dc.identifier.citedreferenceL. Banci, I. Bertini, F. Briganti, and C. Luchinat, J. Magn. Reson. 66, 58 (1986).en_US
dc.identifier.citedreferenceS. Szymanski, A. M. Gryff-Keller, and G. Binsch, J. Magn. Reson. 68, 399 (1986).en_US
dc.identifier.citedreferenceB. L. Silver, Irreducible Tensor Methods (Academic, New York, 1976).en_US
dc.identifier.citedreferenceA. D. McLachlan, Proc. R. Soc. London, Ser. A 280, 271 (1964).en_US
dc.identifier.citedreferenceS. H. Koenig, R. D. BrownIII, and M. Spiller, Magn. Reson. Med 4, 252 (1987).en_US
dc.identifier.citedreferenceD. V. Behere and S. Mitra, Inorg. Chem. 19, 992 (1980).en_US
dc.identifier.citedreferenceD. V. Behere, V. R. Marathe, and S. Mitra, Chem. Phys. Lett. 81, 57 (1981).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.