Show simple item record

Analysis of grain-boundary structure in Al–Cu interconnects

dc.contributor.authorField, David P.en_US
dc.contributor.authorSanchez, John E.en_US
dc.contributor.authorBesser, Paul R.en_US
dc.contributor.authorDingley, David J.en_US
dc.date.accessioned2010-05-06T23:15:28Z
dc.date.available2010-05-06T23:15:28Z
dc.date.issued1997-09-01en_US
dc.identifier.citationField, David P.; Sanchez, John E.; Besser, Paul R.; Dingley, David J. (1997). "Analysis of grain-boundary structure in Al–Cu interconnects." Journal of Applied Physics 82(5): 2383-2392. <http://hdl.handle.net/2027.42/71133>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71133
dc.description.abstractThe role of crystallographic texture in electromigration resistance of interconnect lines is well documented. The presence of a strong (111) fiber texture results in a more reliable interconnect structure. It is also generally accepted that grain-boundary diffusion is the primary mechanism by which electromigration failures occur. It has been difficult to this point, however, to obtain statistically reliable information of grain-boundary structure in these materials as transmission electron microscopy investigations are limited by tedious specimen preparation and small, nonrepresentative, imaging regions. The present work focuses upon characterization of texture and grain-boundary structure of interconnect lines using orientation imaging microscopy, and particularly, upon the linewidth dependence of these measures. Conventionally processed Al–1%Cu lines were investigated to determine the affects of a postpatterning anneal on boundary structure as a function of linewidth. It was observed that texture tended to strengthen slightly with decreasing linewidth subsequent to the anneal procedure. Grain morphology changed substantially as the narrow lines became near bamboo in character and the crystallographic character of the boundary plane changed as a function of linewidth. These results are contrasted with those obtained from Al–1%Cu lines, which were fabricated using the damascene process. The damascene lines show a marked weakening in texture as the linewidth decreases, accompanied by a more random misorientation distribution. A description of the competing energetics, which result in the observed microstructures, is included. © 1997 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent7713001 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleAnalysis of grain-boundary structure in Al–Cu interconnectsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136en_US
dc.contributor.affiliationotherTexSEM Laboratories, Inc., 226W 2230N, Provo, Utah 84604en_US
dc.contributor.affiliationotherAdvanced Micro Devices, Sunnyvale, California 94088-3453en_US
dc.contributor.affiliationotherTexSEM Laboratories, Inc., 226W 2230N, Provo, Utah 84604en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71133/2/JAPIAU-82-5-2383-1.pdf
dc.identifier.doi10.1063/1.365763en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceS. Vaidya and A. K. Sinha, Thin Solid Films THSFAP75, 253 (1981).en_US
dc.identifier.citedreferenceA. N. Campbell, R. E. Mikawa, and D. B. Knorr, J. Electron. Mater. JECMA522, 589 (1993).en_US
dc.identifier.citedreferenceD. B. Knorr, Mater. Res. Soc. Symp. Proc. MRSPDH309, 75 (1993).en_US
dc.identifier.citedreferenceD. B. Knorr and K. P. Rodbell, J. Appl. Phys. JAPIAU79, 2409 (1996).en_US
dc.identifier.citedreferenceK. T. Lee, J. A. Szpunar, and A. Morawiec, Can. Metall. Q. 34, 225 (1995).en_US
dc.identifier.citedreferenceO. V. Kononenko, E. D. Ivanov, V. N. Matveev, and I. I. Khodos, Scr. Metall. Mater. SCRMEX33, 1981 (1995).en_US
dc.identifier.citedreferenceB. L. Adams, S. I. Wright, and K. Kunze, Metall. Trans. 24, 819 (1993).en_US
dc.identifier.citedreferenceN. C. Krieger-Lassen, K. Conradsen, and D. Juul-Jensen, Scanning Microsc. SCMIEU6, 115 (1992).en_US
dc.identifier.citedreferenceS. I. Wright, J. Comput.-Assisted Microsc. 5, 207 (1993).en_US
dc.identifier.citedreferenceS. Kordic, R. A. M. Wolters, and K. Z. Troost, J. Appl. Phys. JAPIAU74, 5391 (1993).en_US
dc.identifier.citedreferenceD. P. Field, D. J. Dingley, M. M. Nowell, and B. L. Adams, Proc. ISTFA 21, ASM International, p. 49 (1995).en_US
dc.identifier.citedreferenceJ. L. Hurd, K. P. Rodbell, D. B. Knorr, and N. L. Koligman, Mater. Res. Soc. Symp. Proc. MRSPDH343, 653 (1994).en_US
dc.identifier.citedreferenceD. L. Barr, W. L. Brown, M. A. Marcus, and M. Ohring, Mater. Res. Soc. Symp. Proc. MRSPDH391, 347 (1995).en_US
dc.identifier.citedreferenceS. Matthies and G. W. Vinel, Mater. Sci. Forum MSFOEP157-162, 1641 (1994).en_US
dc.identifier.citedreferenceJ. Pospiech, K. Sztwiertnia, and F. Haessner, Textures Microstruct. TEMIDK6, 201 (1986).en_US
dc.identifier.citedreferenceJ-W. Zhao, B. L. Adams, and P. R. Morris, Textures Microstruct. TEMIDK8&9, 493 (1988).en_US
dc.identifier.citedreferenceD. P. Field and D. J. Dingley, J. Electron. Mater. JECMA525, 1767 (1996).en_US
dc.identifier.citedreferenceJ. K. Mackenzie, Biometrika 45, 229 (1958).en_US
dc.identifier.citedreferenceC. Turnbull and R. E. Hoffman, Acta Metall. AMETAR2, 419 (1954).en_US
dc.identifier.citedreferenceA. P. Sutton and R. W. Balluffi, Acta Metall. AMETAR35, 2177 (1987).en_US
dc.identifier.citedreferenceT. Watanabe, Mater. Sci. Forum MSFOEP11, 284 (1988).en_US
dc.identifier.citedreferenceH. J. Frost, Y. Hayashi, C. V. Thompson, and D. T. Walton, Mater. Res. Soc. Symp. Proc. MRSPDH338, 295 (1994).en_US
dc.identifier.citedreferenceD. Gupta, in Diffusion Phenomena in Thin Films and Microelectronic Materials, edited by D. Gupta and P. S. Ho (Noyes, Park Ridge, NJ, 1988), pp. 1–72.en_US
dc.identifier.citedreferenceH. Grimmer, H. Bollmann, and D. D. Warrington, Acta Crystallogr. Sect. A ACACBN30A, 197 (1974).en_US
dc.identifier.citedreferenceD. G. Brandon, Acta Metall. AMETAR14, 1479 (1966).en_US
dc.identifier.citedreferenceW. Liu, M. Bayerlein, H. Mughrabi, A. Day, and P. N. Quested, Acta Metall. Mater. AMATEB40, 1763 (1992).en_US
dc.identifier.citedreferenceP. R. Besser, J. E. Sanchez, Jr., and D. P. Field, Mater. Res. Soc. Symp. Proc. (to be published).en_US
dc.identifier.citedreferenceP. R. Besser, J. E. Sanchez, Jr., and D. P. Field, Proc. Advanced Metallization for ULSI, 1996. To be published.en_US
dc.identifier.citedreferenceF. C. Frank, Metall. Trans. A MTTABN19, 403 (1988).en_US
dc.identifier.citedreferenceA. Morawiec and D. P. Field, Philos. Mag. A PMAADG73, 1113 (1996).en_US
dc.identifier.citedreferenceM. McLean and B. Gale, Philos. Mag. PHMAA420, 1033 (1969).en_US
dc.identifier.citedreferenceJ. C. M. Li, J. Appl. Phys. JAPIAU33, 2958 (1962).en_US
dc.identifier.citedreferenceW. T. Read and W. Shockley, Phys. Rev. PHRVAO78, 275 (1950).en_US
dc.identifier.citedreferenceA. H. King and K. E. Harris, Mater. Sci. Forum MSFOEP204-206, 355 (1996).en_US
dc.identifier.citedreferenceV. Randle, Acta Crystallogr. Sect. A ACACEQ50, 588 (1994).en_US
dc.identifier.citedreferenceV. Singh and A. H. King, Scr. Metall. Mater. SCRMEX34, 1723 (1996).en_US
dc.identifier.citedreferenceD. Wolf, Acta Metall. Mater. AMATEB38, 781 (1990).en_US
dc.identifier.citedreferenceH. Mykura, in Grain Boundary Structure and Kinetics (American Society for Metals, Metals Park, OH, 1979), p. 445.en_US
dc.identifier.citedreferenceD. Wolf, Acta Metall. Mater. AMATEB38, 791 (1990).en_US
dc.identifier.citedreferenceH. J. Frost, Y. Hayashi, C. V. Thompson, and D. T. Walton, Mater. Res. Soc. Symp. Proc. MRSPDH338, 295 (1994).en_US
dc.identifier.citedreferenceC. C. Wong, H. I. Smith, and C. V. Thompson, Mater. Res. Soc. Symp. Proc. MRSPDH47, 35 (1985).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.