Show simple item record

On the calculation of vibrational energy relaxation rate constants from centroid molecular dynamics simulations

dc.contributor.authorShi, Qiangen_US
dc.contributor.authorGeva, Eitanen_US
dc.date.accessioned2010-05-06T23:17:46Z
dc.date.available2010-05-06T23:17:46Z
dc.date.issued2003-11-01en_US
dc.identifier.citationShi, Qiang; Geva, Eitan (2003). "On the calculation of vibrational energy relaxation rate constants from centroid molecular dynamics simulations." The Journal of Chemical Physics 119(17): 9030-9046. <http://hdl.handle.net/2027.42/71157>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71157
dc.description.abstractWe explore the use of centroid molecular dynamics (CMD) for calculating vibrational energy relaxation (VER) rate constants of high-frequency molecular vibrations in the condensed phase. We employ our recently proposed linear-response-theory-based approach to VER [Q. Shi and E. Geva, J. Chem. Phys. 118, 7562 (2003)], to obtain a new expression for the VER rate constant in terms of a correlation function that can be directly obtained from CMD simulations. We show that the new expression reduces to a centroid Landau-Teller-type formula in the golden-rule regime. Unlike previously proposed CMD-based approaches to VER, the new formula does not involve additional assumptions beyond the inherent CMD approximation. The new formula has the same form as the classical Landau–Teller formula, and quantum effects enter it in two ways: (1) The initial sampling and subsequent dynamics are governed by the centroid potential, rather than the classical potential; (2) The classical force is replaced by the corresponding centroid symbol. The application of the new method is reported for three model systems: (1) A vibrational mode coupled to a harmonic bath, with the coupling exponential in the bath coordinates; (2) A diatomic molecule coupled to a short linear chain of Helium atoms; (3) A “breathing sphere” diatomic molecule in a two-dimensional monoatomic Lennard-Jones liquid. It is confirmed that CMD is able to capture the main features of the force–force correlation function rather well, in both time and frequency domains. However, we also find that CMD is unable to accurately predict the high-frequency tail of the quantum-mechanical power spectrum of this correlation function, which limits its usefulness for calculating VER rate constants of high-frequency molecular vibrations. The predictions of CMD are compared with those obtained via the linearized-semiclassical initial-value-representation (LSC-IVR) method, which does yield accurate predictions of high-frequency VER rate constants. The reasons underlying these observations are discussed in terms of the similarities and differences between these two approaches. © 2003 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent229628 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleOn the calculation of vibrational energy relaxation rate constants from centroid molecular dynamics simulationsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71157/2/JCPSA6-119-17-9030-1.pdf
dc.identifier.doi10.1063/1.1613636en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceD. W. Oxtoby, Adv. Chem. Phys. ADCPAA47, (Part 2), 487 (1981).en_US
dc.identifier.citedreferenceD. W. Oxtoby, Annu. Rev. Phys. Chem. ARPLAP32, 77 (1981).en_US
dc.identifier.citedreferenceD. W. Oxtoby, J. Phys. Chem. JPCHAX87, 3028 (1983).en_US
dc.identifier.citedreferenceJ. Chesnoy and G. M. Gale, Ann. Phys. (Paris) ANPHAJ9, 893 (1984).en_US
dc.identifier.citedreferenceJ. Chesnoy and G. M. Gale, Adv. Chem. Phys. ADCPAA70, (Part 2), 297 (1988).en_US
dc.identifier.citedreferenceC. B. Harris, D. E. Smith, and D. J. Russell, Chem. Rev. CHREAY90, 481 (1990).en_US
dc.identifier.citedreferenceD. W. Miller and S. A. Adelman, Int. Rev. Phys. Chem. IRPCDL13, 359 (1994).en_US
dc.identifier.citedreferenceR. M. Stratt and M. Maroncelli, J. Phys. Chem. JPCHAX100, 12981 (1996).en_US
dc.identifier.citedreferenceJ. C. Owrutsky, D. Raftery, and R. M. Hochstrasser, Annu. Rev. Phys. Chem. ARPLAP45, 519 (1994).en_US
dc.identifier.citedreferenceT. Elsaesser and W. Kaiser, Annu. Rev. Phys. Chem. ARPLAP42, 83 (1991).en_US
dc.identifier.citedreferenceW. F. Calaway and G. E. Ewing, J. Chem. Phys. JCPSA663, 2842 (1975).en_US
dc.identifier.citedreferenceS. R. J. Brueck and R. M. Osgood, Chem. Phys. Lett. CHPLBC39, 568 (1976).en_US
dc.identifier.citedreferenceA. Laubereau and W. Kaiser, Rev. Mod. Phys. RMPHAT50, 607 (1978).en_US
dc.identifier.citedreferenceB. Faltermeier, R. Protz, M. Maier, and E. Werner, Chem. Phys. Lett. CHPLBC74, 425 (1980).en_US
dc.identifier.citedreferenceB. Faltermeier, R. Protz, and M. Maier, Chem. Phys. CMPHC262, 377 (1981).en_US
dc.identifier.citedreferenceM. Chateau et al., J. Chem. Phys. JCPSA671, 4799 (1979).en_US
dc.identifier.citedreferenceC. Delalande and G. M. Gale, J. Chem. Phys. JCPSA673, 1918 (1980).en_US
dc.identifier.citedreferenceP. Roussignol, C. Delalande, and G. M. Gale, Chem. Phys. CMPHC270, 319 (1982).en_US
dc.identifier.citedreferenceE. J. Heilweil, F. E. Doany, R. Moore, and R. M. Hochstrasser, J. Chem. Phys. JCPSA676, 5632 (1982).en_US
dc.identifier.citedreferenceE. J. Heilweil, M. P. Casassa, R. R. Cavanagh, and J. C. Stephenson, Chem. Phys. Lett. CHPLBC117, 185 (1985).en_US
dc.identifier.citedreferenceE. J. Heilweil, M. P. Casassa, R. R. Cavanagh, and J. C. Stephenson, J. Chem. Phys. JCPSA685, 5004 (1986).en_US
dc.identifier.citedreferenceA. L. Harris, J. K. Brown, and C. B. Harris, Annu. Rev. Phys. Chem. ARPLAP39, 341 (1988).en_US
dc.identifier.citedreferenceM. E. Paige, D. J. Russell, and C. B. Harris, J. Chem. Phys. JCPSA685, 3699 (1986).en_US
dc.identifier.citedreferenceJ. C. Owrutsky et al., Chem. Phys. Lett. CHPLBC184, 368 (1991).en_US
dc.identifier.citedreferenceA. Moustakas and E. Weitz, J. Chem. Phys. JCPSA698, 6947 (1993).en_US
dc.identifier.citedreferenceD. A. V. Kliner, J. C. Alfano, and P. F. Barbara, J. Chem. Phys. JCPSA698, 5375 (1993).en_US
dc.identifier.citedreferenceD. Zimdars et al., Phys. Rev. Lett. PRLTAO70, 2718 (1993).en_US
dc.identifier.citedreferenceN. Pugliano, A. Z. Szarka, S. Gnanakaran, and R. M. Hochstrasser, J. Chem. Phys. JCPSA6103, 6498 (1995).en_US
dc.identifier.citedreferenceM. E. Paige and C. B. Harris, Chem. Phys. CMPHC2149, 37 (1990).en_US
dc.identifier.citedreferenceA. Salloum and H. Dubost, Chem. Phys. CMPHC2189, 179 (1994).en_US
dc.identifier.citedreferenceA. Tokmakoff, B. Sauter, and M. D. Fayer, J. Chem. Phys. JCPSA6100, 9035 (1994).en_US
dc.identifier.citedreferenceA. Tokmakoff and M. D. Fayer, J. Chem. Phys. JCPSA6103, 2810 (1995).en_US
dc.identifier.citedreferenceR. S. Urdahl et al., J. Chem. Phys. JCPSA6107, 3747 (1997).en_US
dc.identifier.citedreferenceJ. C. Owrutsky, M. Li, B. Locke, and R. M. Hochstrasser, J. Phys. Chem. JPCHAX99, 4842 (1995).en_US
dc.identifier.citedreferenceR. Laenen, C. Rauscher, and A. Laubereau, Phys. Rev. Lett. PRLTAO80, 2622 (1998).en_US
dc.identifier.citedreferenceS. Woutersen, U. Emmerichs, H. Nienhuys, and H. J. Bakker, Phys. Rev. Lett. PRLTAO81, 1106 (1998).en_US
dc.identifier.citedreferenceD. J. Myers et al., J. Chem. Phys. JCPSA6109, 5971 (1998).en_US
dc.identifier.citedreferenceD. E. Sagnella et al., Proc. Natl. Acad. Sci. U.S.A. PNASA696, 14324 (1999).en_US
dc.identifier.citedreferenceP. Hamm, M. Lim, and R. M. Hochstrasser, J. Chem. Phys. JCPSA6107, 1523 (1997).en_US
dc.identifier.citedreferenceQ. Shi and E. Geva, J. Chem. Phys. JCPSA6118, 7562 (2003).en_US
dc.identifier.citedreferenceA. Nitzan, S. Mukamel, and J. Jortner, J. Chem. Phys. JCPSA660, 3929 (1974).en_US
dc.identifier.citedreferenceA. Nitzan, S. Mukamel, and J. Jortner, J. Chem. Phys. JCPSA663, 200 (1975).en_US
dc.identifier.citedreferenceS. A. Egorov and J. L. Skinner, J. Chem. Phys. JCPSA6105, 7047 (1996).en_US
dc.identifier.citedreferenceK. F. Everitt, S. A. Egorov, and J. L. Skinner, Chem. Phys. CMPHC2235, 115 (1998).en_US
dc.identifier.citedreferenceK. F. Everitt and J. L. Skinner, J. Chem. Phys. JCPSA6110, 4467 (1999).en_US
dc.identifier.citedreferenceJ. Poulsen and P. J. Rossky, J. Chem. Phys. JCPSA6115, 8014 (2001).en_US
dc.identifier.citedreferenceD. C. Douglass, J. Chem. Phys. JCPSA635, 81 (1961).en_US
dc.identifier.citedreferenceS. A. Adelman and R. H. Stote, J. Chem. Phys. JCPSA688, 4397 (1988).en_US
dc.identifier.citedreferenceR. H. Stote and S. A. Adelman, J. Chem. Phys. JCPSA688, 4415 (1988).en_US
dc.identifier.citedreferenceS. A. Adelman, R. Muralidhar, and R. H. Stote, J. Chem. Phys. JCPSA695, 2738 (1991).en_US
dc.identifier.citedreferenceE. Rabani and D. R. Reichman, J. Phys. Chem. B JPCBFK105, 6550 (2001).en_US
dc.identifier.citedreferenceN. Makri, Annu. Rev. Phys. Chem. ARPLAP50, 167 (1999).en_US
dc.identifier.citedreferenceB. J. Berne, J. Jortner, and R. Gordon, J. Chem. Phys. JCPSA647, 1600 (1967).en_US
dc.identifier.citedreferenceJ. S. Bader and B. J. Berne, J. Chem. Phys. JCPSA6100, 8359 (1994).en_US
dc.identifier.citedreferenceS. A. Egorov, K. F. Everitt, and J. L. Skinner, J. Phys. Chem. A JPCAFH103, 9494 (1999).en_US
dc.identifier.citedreferenceS. A. Egorov and J. L. Skinner, J. Chem. Phys. JCPSA6112, 275 (2000).en_US
dc.identifier.citedreferenceJ. L. Skinner and K. Park, J. Phys. Chem. B JPCBFK105, 6716 (2001).en_US
dc.identifier.citedreferenceD. Rostkier-Edelstein, P. Graf, and A. Nitzan, J. Chem. Phys. JCPSA6107, 10470 (1997).en_US
dc.identifier.citedreferenceD. Rostkier-Edelstein, P. Graf, and A. Nitzan, J. Chem. Phys. JCPSA6108, 9598 (1998).en_US
dc.identifier.citedreferenceK. F. Everitt, J. L. Skinner, and B. M. Ladanyi, J. Chem. Phys. JCPSA6116, 179 (2002).en_US
dc.identifier.citedreferenceP. H. Berens, S. R. White, and K. R. Wilson, J. Chem. Phys. JCPSA675, 515 (1981).en_US
dc.identifier.citedreferenceL. Frommhold, in Cambridge Monographs on Atomic, Molecular, and Chemical Physics, 1st ed. (Cambridge University Press, England, 1993), Vol. 2.en_US
dc.identifier.citedreferenceJ. L. Skinner, J. Chem. Phys. JCPSA6107, 8717 (1997).en_US
dc.identifier.citedreferenceS. C. An, C. J. Montrose, and T. A. Litovitz, J. Chem. Phys. JCPSA664, 3717 (1976).en_US
dc.identifier.citedreferenceS. A. Egorov and J. L. Skinner, Chem. Phys. Lett. CHPLBC293, 439 (1998).en_US
dc.identifier.citedreferenceP. Schofield, Phys. Rev. Lett. PRLTAO4, 239 (1960).en_US
dc.identifier.citedreferenceP. A. Egelstaff, Adv. Phys. ADPHAH11, 203 (1962).en_US
dc.identifier.citedreferenceG. R. Kneller, Mol. Phys. MOPHAM83, 63 (1994).en_US
dc.identifier.citedreferenceG. D. Billing, Chem. Phys. Lett. CHPLBC30, 391 (1975).en_US
dc.identifier.citedreferenceG. D. Billing, J. Chem. Phys. JCPSA699, 5849 (1993).en_US
dc.identifier.citedreferenceJ. C. Tully and R. K. Preston, J. Chem. Phys. JCPSA655, 562 (1971).en_US
dc.identifier.citedreferenceJ. C. Tully, J. Chem. Phys. JCPSA693, 1061 (1990).en_US
dc.identifier.citedreferenceP. J. Kuntz, J. Chem. Phys. JCPSA695, 141 (1991).en_US
dc.identifier.citedreferenceA. I. Krylov et al., J. Chem. Phys. JCPSA6104, 3651 (1996).en_US
dc.identifier.citedreferenceK. Yamashita and W. H. Miller, J. Chem. Phys. JCPSA682, 5475 (1985).en_US
dc.identifier.citedreferenceE. Gallicchio and B. J. Berne, J. Chem. Phys. JCPSA6105, 7064 (1996).en_US
dc.identifier.citedreferenceE. Gallicchio, S. A. Egorov, and B. J. Berne, J. Chem. Phys. JCPSA6109, 7745 (1998).en_US
dc.identifier.citedreferenceS. A. Egorov, E. Gallicchio, and B. J. Berne, J. Chem. Phys. JCPSA6107, 9312 (1997).en_US
dc.identifier.citedreferenceG. Krilov and B. J. Berne, J. Chem. Phys. JCPSA6111, 9147 (1999).en_US
dc.identifier.citedreferenceE. Rabani, G. Krilov, and B. J. Berne, J. Chem. Phys. JCPSA6112, 2605 (2000).en_US
dc.identifier.citedreferenceE. Sim, G. Krilov, and B. Berne, J. Phys. Chem. A JPCAFH105, 2824 (2001).en_US
dc.identifier.citedreferenceS. Jang, Y. Pak, and G. A. Voth, J. Phys. Chem. A JPCAFH103, 10289 (1999).en_US
dc.identifier.citedreferenceJ. Cao and G. A. Voth, J. Chem. Phys. JCPSA6100, 5093 (1994).en_US
dc.identifier.citedreferenceJ. Cao and G. A. Voth, J. Chem. Phys. JCPSA6100, 5106 (1994).en_US
dc.identifier.citedreferenceJ. Cao and G. A. Voth, J. Chem. Phys. JCPSA6101, 6157 (1994).en_US
dc.identifier.citedreferenceJ. Cao and G. A. Voth, J. Chem. Phys. JCPSA6101, 6168 (1994).en_US
dc.identifier.citedreferenceJ. Cao and G. A. Voth, J. Chem. Phys. JCPSA6101, 6184 (1994).en_US
dc.identifier.citedreferenceG. A. Voth, Adv. Chem. Phys. ADCPAA93, 135 (1996).en_US
dc.identifier.citedreferenceS. Jang and G. A. Voth, J. Chem. Phys. JCPSA6111, 2357 (1999).en_US
dc.identifier.citedreferenceS. Jang and G. A. Voth, J. Chem. Phys. JCPSA6111, 2371 (1999).en_US
dc.identifier.citedreferenceD. R. Reichman, P.-N. Roy, S. Jang, and G. A. Voth, J. Chem. Phys. JCPSA6113, 919 (2000).en_US
dc.identifier.citedreferenceA. Calhoun, M. Pavese, and G. A. Voth, Chem. Phys. Lett. CHPLBC262, 415 (1996).en_US
dc.identifier.citedreferenceU. W. Schmitt and G. A. Voth, J. Chem. Phys. JCPSA6111, 9361 (1999).en_US
dc.identifier.citedreferenceM. Pavese and G. A. Voth, Chem. Phys. Lett. CHPLBC249, 231 (1996).en_US
dc.identifier.citedreferenceK. Kinugawa, P. B. Moore, and M. L. Klein, J. Chem. Phys. JCPSA6106, 1154 (1997).en_US
dc.identifier.citedreferenceK. Kinugawa, P. B. Moore, and M. L. Klein, J. Chem. Phys. JCPSA6109, 610 (1998).en_US
dc.identifier.citedreferenceK. Kinugawa, Chem. Phys. Lett. CHPLBC292, 454 (1998).en_US
dc.identifier.citedreferenceM. Pavese, D. R. Bernard, and G. A. Voth, Chem. Phys. Lett. CHPLBC300, 93 (1999).en_US
dc.identifier.citedreferenceR. Ramirez, T. Lopez-Ciudad, and J. C. Noya, Phys. Rev. Lett. PRLTAO81, 3303 (1998).en_US
dc.identifier.citedreferenceR. Ramirez and T. Lopez-Ciudad, Phys. Rev. Lett. PRLTAO83, 4456 (1999).en_US
dc.identifier.citedreferenceR. Ramirez and T. Lopez-Ciudad, J. Chem. Phys. JCPSA6111, 3339 (1999).en_US
dc.identifier.citedreferenceT. Lopez-Ciudad and R. Ramirez, J. Chem. Phys. JCPSA6113, 10849 (2000).en_US
dc.identifier.citedreferenceJ. Poulsen, S. R. Keiding, and P. J. Rossky, Chem. Phys. Lett. CHPLBC336, 488 (2001).en_US
dc.identifier.citedreferenceJ. Poulsen and P. J. Rossky, J. Chem. Phys. JCPSA6115, 8024 (2001).en_US
dc.identifier.citedreferenceE. Geva, Q. Shi, and G. A. Voth, J. Chem. Phys. JCPSA6115, 9209 (2001).en_US
dc.identifier.citedreferenceQ. Shi and E. Geva, J. Chem. Phys. JCPSA6116, 3223 (2002).en_US
dc.identifier.citedreferenceE. Rabani and D. R. Reichman, J. Chem. Phys. JCPSA6116, 6271 (2002).en_US
dc.identifier.citedreferenceE. Rabani and D. R. Reichman, Phys. Rev. E PLEEE865, 036111 (2002).en_US
dc.identifier.citedreferenceD. R. Reichman and E. Rabani, J. Chem. Phys. JCPSA6116, 6279 (2002).en_US
dc.identifier.citedreferenceH. Wang, X. Sun, and W. H. Miller, J. Chem. Phys. JCPSA6108, 9726 (1998).en_US
dc.identifier.citedreferenceE. Pollak and J. Liao, J. Chem. Phys. JCPSA6108, 2733 (1998).en_US
dc.identifier.citedreferenceW. H. Miller, Adv. Chem. Phys. ADCPAA25, 69 (1974).en_US
dc.identifier.citedreferenceW. H. Miller, J. Chem. Phys. JCPSA653, 3578 (1970).en_US
dc.identifier.citedreferenceM. F. Herman and E. Kluk, Chem. Phys. CMPHC291, 27 (1984).en_US
dc.identifier.citedreferenceE. J. Heller, J. Chem. Phys. JCPSA694, 2723 (1981).en_US
dc.identifier.citedreferenceK. G. Kay, J. Chem. Phys. JCPSA6100, 4377 (1994).en_US
dc.identifier.citedreferenceM. Ovchinnikov and V. A. Apkarian, J. Chem. Phys. JCPSA6105, 10312 (1996).en_US
dc.identifier.citedreferenceM. Ovchinnikov and V. A. Apkarian, J. Chem. Phys. JCPSA6108, 2277 (1998).en_US
dc.identifier.citedreferenceX. Sun and W. H. Miller, J. Chem. Phys. JCPSA6106, 916 (1997).en_US
dc.identifier.citedreferenceN. Makri and K. Thompson, Chem. Phys. Lett. CHPLBC291, 101 (1998).en_US
dc.identifier.citedreferenceW. H. Miller, Faraday Discuss. FDISE6110, 1 (1998).en_US
dc.identifier.citedreferenceJ. S. Shao and N. Makri, J. Phys. Chem. A JPCAFH103, 7753 (1999).en_US
dc.identifier.citedreferenceK. Thompson and N. Makri, Phys. Rev. E PLEEE859, R4729 (1999).en_US
dc.identifier.citedreferenceO. Kühn and N. Makri, J. Phys. Chem. A JPCAFH103, 9487 (1999).en_US
dc.identifier.citedreferenceH. Wang, M. Thoss, and W. H. Miller, J. Chem. Phys. JCPSA6112, 47 (2000).en_US
dc.identifier.citedreferenceM. Ovchinnikov, V. A. Apkarian, and G. A. Voth, J. Chem. Phys. JCPSA6184, 7130 (2001).en_US
dc.identifier.citedreferenceW. H. Miller, J. Phys. Chem. A JPCAFH105, 2942 (2001).en_US
dc.identifier.citedreferenceN. Makri and W. H. Miller, J. Chem. Phys. JCPSA6116, 9207 (2002).en_US
dc.identifier.citedreferenceX. Sun, H. Wang, and W. H. Miller, J. Chem. Phys. JCPSA6109, 4190 (1998).en_US
dc.identifier.citedreferenceX. Sun, H. Wang, and W. H. Miller, J. Chem. Phys. JCPSA6109, 7064 (1998).en_US
dc.identifier.citedreferenceH. Wang, X. Song, D. Chandler, and W. H. Miller, J. Chem. Phys. JCPSA6110, 4828 (1999).en_US
dc.identifier.citedreferenceX. Sun and W. H. Miller, J. Chem. Phys. JCPSA6110, 6635 (1999).en_US
dc.identifier.citedreferenceQ. Shi and E. Geva, J. Phys. Chem. A (in press).en_US
dc.identifier.citedreferenceB. J. Berne and D. Thirumalai, Annu. Rev. Phys. Chem. ARPLAP37, 401 (1986).en_US
dc.identifier.citedreferenceD. M. Ceperley, Rev. Mod. Phys. RMPHAT67, 279 (1995).en_US
dc.identifier.citedreferenceA. Nitzan and R. Silbey, J. Chem. Phys. JCPSA660, 4070 (1974).en_US
dc.identifier.citedreferenceF. E. Figueirido and R. M. Levy, J. Chem. Phys. JCPSA697, 703 (1992).en_US
dc.identifier.citedreferenceA. G. Redfield, IBM Syst. J. IBMSA71, 19 (1957).en_US
dc.identifier.citedreferenceR. K. Wangsness and F. Bloch, Phys. Rev. PHRVAO89, 728 (1953).en_US
dc.identifier.citedreferenceC. P. Slichter, Principles of Magnetic Resonance (Springer-Verlag, Berlin, 1990).en_US
dc.identifier.citedreferenceA. Abragam, The Principles of Nuclear Magnetism (Oxford, London, 1961).en_US
dc.identifier.citedreferenceJ. M. Jean, R. A. Friesner, and G. R. Fleming, J. Chem. Phys. JCPSA696, 5827 (1992).en_US
dc.identifier.citedreferenceH. Gai and G. A. Voth, J. Chem. Phys. JCPSA699, 740 (1993).en_US
dc.identifier.citedreferenceW. T. Pollard and R. A. Friesner, J. Chem. Phys. JCPSA6100, 5054 (1994).en_US
dc.identifier.citedreferenceE. Geva, E. Rosenman, and D. J. Tannor, J. Chem. Phys. JCPSA6113, 1380 (2000).en_US
dc.identifier.citedreferenceN. G. V. Kampen, Stochastic Processes in Physics and Chemistry (Elsevier, Amsterdam, 1992).en_US
dc.identifier.citedreferenceR. Zwanzig, J. Chem. Phys. JCPSA634, 1931 (1961).en_US
dc.identifier.citedreferenceL. Landau and E. Teller, Physik Z. Sobyetunion 10, 34 (1936).en_US
dc.identifier.citedreferenceR. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II: Nonequilibrium Statistical Mechanics (Springer-Verlag, Berlin, 1983).en_US
dc.identifier.citedreferenceJ. Chesnoy and J. J. Weis, J. Chem. Phys. JCPSA684, 5378 (1986).en_US
dc.identifier.citedreferenceJ. Hautman and M. L. Klein, Mol. Phys. MOPHAM80, 647 (1993).en_US
dc.identifier.citedreferenceJ. A. Barker, D. Henderson, and F. F. Abraham, Physica A PHYADX106, 226 (1981).en_US
dc.identifier.citedreferenceQ. Shi and E. Geva, J. Chem. Phys. JCPSA6118, 8173 (2003).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.