Show simple item record

Leading Edge of a Shock‐Induced Boundary Layer

dc.contributor.authorSichel, Martinen_US
dc.date.accessioned2010-05-06T23:23:56Z
dc.date.available2010-05-06T23:23:56Z
dc.date.issued1962-10en_US
dc.identifier.citationSichel, Martin (1962). "Leading Edge of a Shock‐Induced Boundary Layer." Physics of Fluids 5(10): 1168-1180. <http://hdl.handle.net/2027.42/71222>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71222
dc.description.abstractThe boundary layer which is formed as a shock wave propagates down a shock tube causes both shock attenuation and shock curvature. Hartunian studied the curvature effect; however, as he points out, because of the singularities at the leading edge of the boundary layer his solution is not valid where the shock wave touches the tube wall. A detailed study is now made of the flow near the leading edge of this shock‐induced boundary layer for a weak shock wave. The leading‐edge flow can be divided into a shear layer near the wall, and into a free stream or shock region. By expanding the Navier—Stokes equations in the small parameter M1* — 1 and stretching the coordinates, simplified equations for the shear layer and shock region are obtained. The shear layer and shock region flows interact and it is found that the shock region must be a zone of non‐Hugoniot flow where the shock structure is two dimensional. An approximate solution of the shock shape is obtained by replacing the shock region by an oblique shock which is approximately matched to the shear layer.en_US
dc.format.extent3102 bytes
dc.format.extent935153 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleLeading Edge of a Shock‐Induced Boundary Layeren_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan, Ann Arbor, Michiganen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71222/2/PFLDAS-5-10-1168-1.pdf
dc.identifier.doi10.1063/1.1706502en_US
dc.identifier.sourcePhysics of Fluidsen_US
dc.identifier.citedreferenceE. Becker, Z. Flugwissenschaften 7, 61 (1959).en_US
dc.identifier.citedreferenceR. J. Emrich and D. B. Wheeler, Phys. Fluids 1, 14 (1958).en_US
dc.identifier.citedreferenceR. E. Duff and J. L. Young, III, Phys. Fluids 4, 812 (1961).en_US
dc.identifier.citedreferenceS. C. Lin and W. I. Fyfe, Phys. Fluids 4, 238 (1961).en_US
dc.identifier.citedreferenceR. A. Hartunian, Phys. Fluids 4, 1059 (1961).en_US
dc.identifier.citedreferenceH. Mirels, NACA TN 3401 (1955).en_US
dc.identifier.citedreferenceB. Bertotti, Rend. ist. lombardo Sci. A92, 132 (1957).en_US
dc.identifier.citedreferenceW. D. Hayes, Fundamentals of Gas Dynamics (Princeton University Press, Princeton, New Jersey, 1958), Sec. D.en_US
dc.identifier.citedreferenceF. W. Sears, Thermodynamics (Addison‐Wesley Publishing Company, Inc., Reading, Massachusetts, 1953), pp. 147–151.en_US
dc.identifier.citedreferenceM. J. Lighthill, “Viscosity in Waves of Finite Amplitude,” in Surveys in Mechanics, edited by G. K. Batchelor and R. M. Davis (Cambridge University Press, New York, 1956).en_US
dc.identifier.citedreferenceN. Rott and R. A. Hartunian, On the Heat Transfer to the Walls of a Shock Tube (Cornell University Press, Ithaca, New York, 1955).en_US
dc.identifier.citedreferenceLord Rayleigh, Theory of Sound (Dover Publications, New York, 1896), Vol. II, p. 334.en_US
dc.identifier.citedreferenceH. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Oxford University Press, New York, 1958), 2nd ed.en_US
dc.identifier.citedreferenceL. Howarth, Modern Developments in Fluid Dynamics, High Speed Flow (Oxford University Press, New York, 1953), Vol. I.en_US
dc.identifier.citedreferenceM. Sichel, “A Study of the Leading Edge of a Shock Induced Boundary Layer,” Ph.D. thesis, Princeton University (1961).en_US
dc.identifier.citedreferenceJ. Sternberg, Phys. Fluids 2, 179 (1959).en_US
dc.identifier.citedreferenceK. Oswatitsch, Gas Dynamics (Academic Press Inc., New York, 1956).en_US
dc.identifier.citedreferenceK. G. Guderley, Theorie schallnaher Strömungen (Springer‐Verlag, Berlin, 1957).en_US
dc.identifier.citedreferenceJ. D. Cole, Office of Scientific Research TN 54‐55, GALCIT (1954).en_US
dc.identifier.citedreferenceM. C. Adams, J. Aeronaut. Sci. 16, 685 (1949).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.