Show simple item record

Photoacoustic and photothermal beam deflection as a probe of laser ablation of materials

dc.contributor.authorSell, Jeffrey A.en_US
dc.contributor.authorHeffelfinger, David M.en_US
dc.contributor.authorVentzek, Peter L. G.en_US
dc.contributor.authorGilgenbach, Ronald M.en_US
dc.date.accessioned2010-05-06T23:25:48Z
dc.date.available2010-05-06T23:25:48Z
dc.date.issued1991-02-01en_US
dc.identifier.citationSell, Jeffrey A.; Heffelfinger, David M.; Ventzek, Peter L. G.; Gilgenbach, Ronald M. (1991). "Photoacoustic and photothermal beam deflection as a probe of laser ablation of materials." Journal of Applied Physics 69(3): 1330-1336. <http://hdl.handle.net/2027.42/71241>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71241
dc.description.abstractPhotoacoustic and photothermal laser‐beam deflection were applied as diagnostics of the pulsed ultraviolet (UV) laser ablation of a polymer polyethyleneterephthalate. Here, a continuous‐wave (cw) laser beam is passed parallel to the sample, but displaced from it by a few hundred micrometers. A density gradient caused by the pulsed UV laser heating or ablation of the sample deflects the cw laser beam. This deflection is measured directly using a position‐sensitive detector. A quantitative model of the photothermal deflection at low fluence was developed which fits the data very well. This enabled a new method of measuring the thermal diffusivity of the fluid in contact with the sample. Distortion of the photothermal and photoacoustic signal as the excimer fluence is raised through the ablation threshold allowed the determination of the threshold. Also, the velocity of the ablation products was measured through a time‐of‐flight analysis and found to be dependent on the laser fluence used, the nature of the gas above the sample, and the distance above the sample at which the velocity is measured. The beam deflection in a vacuum is used to measure the ablation product velocity.en_US
dc.format.extent3102 bytes
dc.format.extent748317 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titlePhotoacoustic and photothermal beam deflection as a probe of laser ablation of materialsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumPhysics Department, General Motors Research Laboratories, Warren, Michigan 48090‐9055en_US
dc.contributor.affiliationumIntense Energy Beam Interaction Laboratory, Nuclear Engineering Department, University of Michigan, Ann Arbor, Michigan 48109‐2104en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71241/2/JAPIAU-69-3-1330-1.pdf
dc.identifier.doi10.1063/1.347268en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceJ. A. Sell, D. M. Heffelfinger, P. Ventzek, and R. M. Gilgenbach, Appl. Phys. Lett. 55, 2435 (1989).en_US
dc.identifier.citedreferenceJ. A. Sell, D. M. Heffelfinger, P. Ventzek, and R. M. Gilgenbach in Photoacoustic and Photothermal Phenomena II: Proceedings of the 6th International Topical Meeting, Baltimore, MD, edited by J. C. Murphy, J. W. Maclachlan Spicer, L. C. Aamodt, and B. S. H. Royce, Vol. 62 of Springer Series in Optical Sciences (Springer, Berlin, 1990), p. 194.en_US
dc.identifier.citedreferenceP. L. G. Ventzek, R. M. Gilgenbach, J. A. Sell, and D. M. Heffelfinger, Bull. Am. Phys. Soc. 34, 1919 (1989).en_US
dc.identifier.citedreferenceP. L. G. Ventzek, R. M. Gilgenbach, J. A. Sell, and D. M. Heffelfinger, J. Appl. Phys. 68, 965 (1990).en_US
dc.identifier.citedreferenceW. B. Jackson, N. M. Amer, A. C. Boccara, and D. Fournier, Appl. Opt. 20, 1333 (1981).en_US
dc.identifier.citedreferenceA. C. Boccara, D. Fournier, W. Jackson, and N. M. Amer, Opt. Lett. 5, 377 (1980).en_US
dc.identifier.citedreferenceJ. C. Murphy and L. C. Aamodt, J. Appl. Phys. 51, 4581 (1980).en_US
dc.identifier.citedreferenceA. Mandelis, J. Appl. Phys. 54, 3404 (1983).en_US
dc.identifier.citedreferenceR. M. Banish, R.-F. Xiao, and F. Rosenberger, J. Appl. Phys. 64, 2907 (1988).en_US
dc.identifier.citedreferenceH. Sontag and A. C. Tam, Opt. Lett. 10, 436 (1985).en_US
dc.identifier.citedreferenceJ. A. Sell, Appl. Opt. 24, 3725 (1985).en_US
dc.identifier.citedreferenceJ. A. Sell, Photothermal Investigations of Solids and Fluids, edited by J. A. Sell (Academic, Boston, 1989).en_US
dc.identifier.citedreferenceH. Sontag, A. C. Tarn, and P. Hess, J. Chem. Phys. 86, 3950 (1987).en_US
dc.identifier.citedreferenceF. K. Fotiou and M. D. Morris, Appl. Spectrosc. 40, 700 (1986).en_US
dc.identifier.citedreferenceA. C. Tam and H. Schroeder, J. Appl. Phys. 64, 3667 (1988).en_US
dc.identifier.citedreferenceJ. C. Loulergue and A. C. Tam, Appl. Phys. Lett. 46, 457 (1985).en_US
dc.identifier.citedreferenceS. I. Yun, K-D. Oh, K-S. Ryu, C-G. Kim, H. L. Park, H. J. Seo, and C. Kum, Appl. Phys. B 40, 95 (1986).en_US
dc.identifier.citedreferenceA. C. Tam, W. Zapka, H. Coufal, and B. Sullivan, J. Phys. (Paris) Colloq. 44, C6–203 (1983).en_US
dc.identifier.citedreferenceW. Zapka, P. Pokrowsky, and A. C. Tam, Opt. Lett. 7, 477 (1982).en_US
dc.identifier.citedreferenceW. Zapka and A. C. Tam, Appl. Phys. Lett. 40, 310 (1982).en_US
dc.identifier.citedreferenceA. C. Tam and W. P. Leung, Phys. Rev. Lett. 53, 560 (1984).en_US
dc.identifier.citedreferenceA. C. Tam, Rev. Mod. Phys. 58, 381 (1986).en_US
dc.identifier.citedreferenceA. Rose, G. J. Salamo, and R. Gupta, Appl. Opt. 23, 781 (1984).en_US
dc.identifier.citedreferenceA. Rose and R. Gupta, Opt. Commun. 56, 303 (1986).en_US
dc.identifier.citedreferenceG. C. Wetsel, Jr., S. A. Stotts, and C. G. Clark, J. Phys. (Paris) Colloq. 44, C6–67 (1983).en_US
dc.identifier.citedreferenceG. E. Jamieson and G. C. Wetsel, in IEEE 1985 Ultrasonics Symposium Proceedings, San Francisco, CA, 1985, edited by B. R. McAvoy (IEEE, New York, 1985), p. 451.en_US
dc.identifier.citedreferenceG. Koren, Appl. Phys. Lett. 51, 569 (1987).en_US
dc.identifier.citedreferenceS. Petzoldt, A. P. Elg, M. Reichling, J. Reif, and E. Matthias, Appl. Phys. Lett. 53, 2005 (1988).en_US
dc.identifier.citedreferenceJ. Reif, S. Petzoldt, A. P. Elg, and E. Matthias, Appl. Phys. A 49, 199 (1989).en_US
dc.identifier.citedreferenceC. L. Enloe, R. M. Gilgenbach and J. S. Meachum, Rev. Sci. Instrum. 58, 1597 (1987).en_US
dc.identifier.citedreferenceC. L. Enloe, Ph.D. thesis, Department of Nuclear Engineering, University of Michigan, 1988.en_US
dc.identifier.citedreferenceR. W. Dreyfus, F. A. McDonald, and R. J. von Gutfield, J. Vac. Sci. Technol. B 5, 1521 (1987).en_US
dc.identifier.citedreferenceR. W. Dreyfus, F. A. McDonald, and R. J. von Gutfield, Appl. Phys. Lett. 50, 1491 (1987).en_US
dc.identifier.citedreferenceSee Sec. 14.6.9 of H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Oxford Science, Oxford, 1986).en_US
dc.identifier.citedreferenceP. E. Dyer and J. Sidhu, J. Appl. Phys. 57, 1420 (1985).en_US
dc.identifier.citedreferenceS. Lazare and V. Granier, J. Appl. Phys. 63, 2110 (1988).en_US
dc.identifier.citedreferenceS. Lazare and V. Granier, Laser Chem. 10, 25 (1989).en_US
dc.identifier.citedreferenceS. Lazare, J. C. Soulignac, and P. Fragnaud, Appl. Phys. Lett. 50, 624 (1987).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.