Show simple item record

The formation of thick borders on an initially stationary fluid sheet

dc.contributor.authorSong, Museoken_US
dc.contributor.authorTryggvason, Grétaren_US
dc.date.accessioned2010-05-06T23:26:10Z
dc.date.available2010-05-06T23:26:10Z
dc.date.issued1999-09en_US
dc.identifier.citationSong, Museok; Tryggvason, Grétar (1999). "The formation of thick borders on an initially stationary fluid sheet." Physics of Fluids 11(9): 2487-2493. <http://hdl.handle.net/2027.42/71245>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71245
dc.description.abstractThe formation of thick borders on an initially stationary two-dimensional fluid sheet surrounded by another fluid is examined by numerical simulations. The process is controlled by the density and the viscosity ratios, and the Ohnesorge number [Oh = μ/(ρdσ)0.5].[Oh=μ/(ρdσ)0.5]. The main focus here is on the variation with Oh. The edge of the sheet is pulled back into the sheet due to the surface tension and a thick blob is formed at the edge. In the limits of high and low Oh, the receding speed of the edge is independent of Oh. Different scaling laws, however, apply for the different limits. The speed scales as V ∼ (σ/ρd)0.5V∼(σ/ρd)0.5 in the low Oh limit as proposed by Taylor [Proc. R. Soc. London, Ser. A 253, 13 (1959)] and as V ∼ σ/μV∼σ/μ in the high Oh limit. For low enough Oh, the edge forms a two-dimensional drop that is connected to the rest of the sheet by a thin neck and capillary waves propagate into the undisturbed sheet. The thickness of the neck reaches an approximately constant value that decreases with Oh, suggesting that the blob may “pinch-off” in the inviscid limit. © 1999 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent139004 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleThe formation of thick borders on an initially stationary fluid sheeten_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationotherHong Ik University, Chochiwon, Choong-Nam 339-701, Koreaen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71245/2/PHFLE6-11-9-2487-1.pdf
dc.identifier.doi10.1063/1.870113en_US
dc.identifier.sourcePhysics of Fluidsen_US
dc.identifier.citedreferenceA. H. Lefebvre, Atomization and Sprays (Taylor & Francis, London, 1989), pp. 1–34.en_US
dc.identifier.citedreferenceA. Mansour and N. Chigier, “Disintegration of liquid sheets,” Phys. Fluids A PFADEB2, 706 (1990).en_US
dc.identifier.citedreferenceN. K. Rizk and A. H. Lefebvre, “Influence of liquid film thickness on airblast atomization,” Trans. ASME: J. Eng. Gas Turbines Power JETPEZ102, 706 (1980).en_US
dc.identifier.citedreferenceA. Mansour and N. Chigier, “Dynamic behavior of liquid sheets,” Phys. Fluids A PFADEB3, 2971 (1991).en_US
dc.identifier.citedreferenceR. H. Rangel and W. A. Sirignano, “Nonlinear growth of Kelvin–Helmholtz instability—Effect of surface-tension and density ratio,” Phys. Fluids PFLDAS31, 1845 (1988).en_US
dc.identifier.citedreferenceR. H. Rangel and W. A. Sirignano, “The linear and nonlinear shear instability of a fluid sheet,” Phys. Fluids A PFADEB3, 2392 (1991).en_US
dc.identifier.citedreferenceS. Kawano, H. Hashimoto, H. Togari, A. Ihara, T. Suzuki, and T. Harada, “Deformation and breakup of an annular liquid sheet in a gas stream,” Atomization Sprays ATSPE27, 359 (1997).en_US
dc.identifier.citedreferenceA. Lozano, A. Garcia-Olivares, and C. Dopazo, “The instability growth leading to a liquid sheet breakup,” Phys. Fluids PHFLE610, 2188 (1998).en_US
dc.identifier.citedreferenceR. P. Fraser and P. Eisenklam, “Research into the performance of atomizers for liquids,” Imp. Coll. Chem. Eng. Soc. J. JIMCAJ7, 52 (1953).en_US
dc.identifier.citedreferenceG. I. Taylor, “The dynamics of thin sheets of fluid. III. Disintegration of fluid sheets,” Proc. R. Soc. London, Ser. A PRLAAZ253, 313 (1959).en_US
dc.identifier.citedreferenceLord J. W. S. Rayleigh, “On the instability of jets,” Proc. London Math. Soc. PLMTAL10, 4 (1878).en_US
dc.identifier.citedreferenceG. Tryggvason and S. O. Unverdi, “The shear breakup of an immiscible fluid interface,” in Proceedings of the C. S. Yih Memorial Symposium, edited by W. Shyy (Cambridge University Press, Cambridge, 1999).en_US
dc.identifier.citedreferenceG. Tryggvason and H. Aref, “Numerical experiments on Hele–Shaw flow with a sharp interface,” J. Fluid Mech. JFLSA7136, 1 (1983).en_US
dc.identifier.citedreferenceT. Y. Hou, J. S. Lowengrub, and M. J. Shelley, “The long-time motion of vortex sheets with surface tension,” Phys. Fluids PHFLE69, 1933 (1997).en_US
dc.identifier.citedreferenceJ. B. Keller and M. J. Miksis, “Surface tension driven flows,” SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. SMJMAP43, 268 (1983).en_US
dc.identifier.citedreferenceH. N. Oguz and A. Prosperetti, “Surface-tension effects in the contact of liquid surfaces,” J. Fluid Mech. JFLSA7203, 149 (1989).en_US
dc.identifier.citedreferenceS. O. Unverdi and G. Tryggvason, “A front tracking method for viscous incompressible flows,” J. Comput. Phys. JCTPAH100, 25 (1992).en_US
dc.identifier.citedreferenceC. S. Peskin and D. M. McQueen, “A three-dimensional computational method for blood flow in the heart. I. Immersed elastic fibers in a viscous incompressible fluid,” J. Comput. Phys. JCTPAH81, 372 (1989).en_US
dc.identifier.citedreferenceG. R. Baker, D. I. Meiron, and S. A. Orszag, “Vortex simulation of the Rayleigh–Taylor instability,” Phys. Fluids PFLDAS23, 1485 (1980).en_US
dc.identifier.citedreferenceG. Tryggvason, “Numerical simulations of the Rayleigh–Taylor instability,” J. Comput. Phys. JCTPAH75, 253 (1988).en_US
dc.identifier.citedreferenceH. A. Stone and L. G. Leal, “Relaxation and breakup of an initially extended drop in an otherwise quiescent fluid,” J. Fluid Mech. JFLSA7198, 399 (1989).en_US
dc.identifier.citedreferenceL. M. Milne-Thomson, Theoretical Hydrodynamics (MacMillan, London, 1968), pp. 442–449.en_US
dc.identifier.citedreferenceW. Tauber, S. O. Unverdi, and G. Tryggvason, “The non-linear behavior of a sheared immiscible fluid interface” (unpublished).en_US
dc.identifier.citedreferenceA. L. Yarin and D. A. Weiss, “Impact of drops on solid-surfaces—Self-similar capillary waves and splashing as a new-type of kinematic discontinuity,” J. Fluid Mech. JFLSA7283, 141 (1995).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.