Show simple item record

Numerical simulation of supernova-relevant laser-driven hydro experiments on OMEGA

dc.contributor.authorMiles, A. R.en_US
dc.contributor.authorBraun, D. G.en_US
dc.contributor.authorEdwards, M. J.en_US
dc.contributor.authorRobey, H. F.en_US
dc.contributor.authorDrake, R. Paulen_US
dc.contributor.authorLeibrandt, D. R.en_US
dc.date.accessioned2010-05-06T23:26:56Z
dc.date.available2010-05-06T23:26:56Z
dc.date.issued2004-07en_US
dc.identifier.citationMiles, A. R.; Braun, D. G.; Edwards, M. J.; Robey, H. F.; Drake, R. P.; Leibrandt, D. R. (2004). "Numerical simulation of supernova-relevant laser-driven hydro experiments on OMEGA." Physics of Plasmas 11(7): 3631-3645. <http://hdl.handle.net/2027.42/71253>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71253
dc.description.abstractIn ongoing experiments performed on the OMEGA laser [J. M. Soures et al., Phys. Plasmas 5, 2108 (1996)] at the University of Rochester Laboratory for Laser Energetics, nanosecond laser pulses are used to drive strong blast waves into two-layer targets. Perturbations on the interface between the two materials are unstable to the Richtmyer–Meshkov instability as a result of shock transit and the Rayleigh–Taylor instability during the deceleration-phase behind the shock front. These experiments are designed to produce a strongly shocked interface whose evolution is a scaled version of the unstable hydrogen–helium interface in core-collapse supernovae such as SN 1987A. The ultimate goal of this research is to develop an understanding of the effect of hydrodynamic instabilities and the resulting transition to turbulence on supernovae observables that remain as yet unexplained. The authors are, at present, particularly interested in the development of the Rayleigh–Taylor instability through the late nonlinear stage, the transition to turbulence, and the subsequent transport of material within the turbulent region. In this paper, the results of numerical simulations of two-dimensional (2D) single and multimode experiments are presented. These simulations are run using the 2D Arbitrary Lagrangian Eulerian radiation hydrodynamics code CALE [R. T. Barton, Numerical Astrophysics (Jones and Bartlett, Boston, 1985)]. The simulation results are shown to compare well with experimental radiography. A buoyancy-drag model captures the behavior of the single-mode interface, but gives only partial agreement in the multimode cases. The Richtmyer–Meshkov and target decompression contributions to the perturbation growth are both estimated and shown to be significant. Significant dependence of the simulation results on the material equation of state is demonstrated, and the prospect of continuing the experiments to conclusively demonstrate the transition to turbulence is discussed. © 2004 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent1575433 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/octet-stream
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleNumerical simulation of supernova-relevant laser-driven hydro experiments on OMEGAen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationotherLawrence Livermore National Laboratory, Livermore, California 94550en_US
dc.contributor.affiliationotherUniversity of Maryland, College Park, Maryland 20741en_US
dc.contributor.affiliationotherLawrence Livermore National Laboratory, Livermore, California 94550en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71253/2/PHPAEN-11-7-3631-1.pdf
dc.identifier.doi10.1063/1.1753274en_US
dc.identifier.sourcePhysics of Plasmasen_US
dc.identifier.citedreferenceJ. W. S. Rayleigh, Scientific Papers (University Press, Cambridge, 1899).en_US
dc.identifier.citedreferenceG. I. Taylor, Proc. R. Soc. London, Ser. A PRLAAZ201, 192 (1950).en_US
dc.identifier.citedreferenceS. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Dover, New York, 1981).en_US
dc.identifier.citedreferenceJ. D. Lindl, Inertial Confinement Fusion: The Quest for Ignition and High-Energy Gain (Springer-Verlag, New York, 1998).en_US
dc.identifier.citedreferenceD. Shvarts, O. Sadot, D. Oron, A. Rikanati, U. Alon, and G. Ben-Dor, in Handbook of Shock Waves, edited by G. Ben-Dor, O. Igra, and T. Elperin (Academic, London, 2001), Vol. 2, Chap. 14, pp. 489–543.en_US
dc.identifier.citedreferenceH. J. Kull, Phys. Rep. PRPLCM206, 197 (1991).en_US
dc.identifier.citedreferenceM. N. Rosenbluth and C. L. Longmire, Ann. Phys. (N.Y.) APNYA626, 2227 (1957).en_US
dc.identifier.citedreferenceR. Chevalier, Astrophys. J. ASJOAB207, 872 (1976).en_US
dc.identifier.citedreferenceYa. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomema (Dover, New York, 2002).en_US
dc.identifier.citedreferenceNational Research Council of the National Academies, Frontiers in High Energy Density Physics (The National Academies Press, Washington DC, 2002).en_US
dc.identifier.citedreferenceW. D. Arnett, J. N. Bachall, R. P. Kirshner, and S. E. Woosley, Annu. Rev. Astron. Astrophys. ARAAAJ27, 629 (1989).en_US
dc.identifier.citedreferenceW. Hillebrandt and P. Hoflich, Rep. Prog. Phys. RPPHAG52, 1421 (1989).en_US
dc.identifier.citedreferenceD. Ryutov, R. P. Drake, J. Kane, E. Liang, B. A. Remington, and W. M. Wood-Vasey, Astrophys. J. ASJOAB518, 821 (1999).en_US
dc.identifier.citedreferenceD. Arnett, B. Fryxell, and E. Muller, Astrophys. J. Lett. AJLEAU341, L63 (1989); E. Muller, B. Fryxell, and D. Arnett, Astron. Astrophys. AAEJAF251, 505 (1992).en_US
dc.identifier.citedreferenceB. A. Remington, J. Kane, R. P. Drake et al., Phys. Plasmas PHPAEN4, 1994 (1997).en_US
dc.identifier.citedreferenceJ. Hecht, U. Alon, and D. Shvarts, Phys. Fluids PHFLE66, 4019 (1994).en_US
dc.identifier.citedreferenceU. Alon, J. Hecht, D. Ofer, and D. Shvarts, Phys. Rev. Lett. PRLTAO74, 534 (1995).en_US
dc.identifier.citedreferenceJ. M. Soures, R. L. McCrory, C. P. Verdon et al., Phys. Plasmas PHPAEN3, 2108 (1996).en_US
dc.identifier.citedreferenceJ. Kane, D. Arnett, B. A. Remington, S. G. Glendinning, J. Castor, R. Wallace, A. Rubenchik, and B. A. Fryxell, Astrophys. J. Lett. AJLEAU478, L75 (1997).en_US
dc.identifier.citedreferenceB. A. Remington, R. P. Drake, H. Takabe, and D. Arnett, Phys. Plasmas PHPAEN7, 1641 (2000).en_US
dc.identifier.citedreferenceR. P. Drake, J. J. Carroll, K. Eastbrook, S. G. Glendinning, B. A. Remington, and R. McCray, Astrophys. J. Lett. AJLEAU500, L157 (1998).en_US
dc.identifier.citedreferenceP. E. Dimotakis, J. Fluid Mech. JFLSA7409, 69 (2000).en_US
dc.identifier.citedreferenceH. F. Robey, Y. Zhou, A. C. Buckingham, P. Keiter, B. A. Remington, and R. P. Drake, Phys. Plasmas PHPAEN10, 614 (2003).en_US
dc.identifier.citedreferenceR. T. Barton, Numerical Astrophysics (Jones and Bartlett, Boston, 1985).en_US
dc.identifier.citedreferenceR. D. Richtmyer, Commun. Pure Appl. Math. CPMAMV13, 297 (1960).en_US
dc.identifier.citedreferenceE. E. Meshkov, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza IMZGAB4, 151 (1969).en_US
dc.identifier.citedreferenceS. G. Glendinning, J. Bolstad, D. G. Braun et al., Phys. Plasmas PHPAEN10, 1931 (2003).en_US
dc.identifier.citedreferenceR. M. More, K. H. Warren, D. A. Young, and G. B. Zimmerman, Phys. Fluids PFLDAS31, 3059 (1988).en_US
dc.identifier.citedreferenceS. V. Weber, B. A. Remington, S. W. Haan, B. G. Wilson, and J. K. Nash, Phys. Plasmas PHPAEN1, 3652 (1994).en_US
dc.identifier.citedreferenceG. B. Zimmerman and W. L. Kruer, Comments Plasma Phys. Controlled Fusion CPCFBJ2, 51 (1975).en_US
dc.identifier.citedreferenceV. N. Goncharov, P. McKenty, S. Shupsky, R. Betti, R. L. McCrory, and C. Cherfils-Clerouin, Phys. Plasmas PHPAEN7, 5118 (2000).en_US
dc.identifier.citedreferenceD. Oron, L. Arazi, D. Kartoon, A. Rikanati, U. Alon, and D. Shvarts, Phys. Plasmas PHPAEN8, 2883 (2001).en_US
dc.identifier.citedreferenceJ. C. V. Hanson, P. A. Rosen, T. J. Goldsack, K. Oades, P. Fieldhouse, N. Cowperthwaite, D. L. Youngs, N. Mawhinney, and A. J. Baxter, Laser Part. Beams LPBEDA8, 51 (1990).en_US
dc.identifier.citedreferenceG. Dimonte, Phys. Plasmas PHPAEN7, 2255 (2000).en_US
dc.identifier.citedreferenceK. A. Meyer and P. J. Blewett, Phys. Fluids PFLDAS15, 753 (1972).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.