Show simple item record

Paramagnetically induced nuclear magnetic resonance relaxation in solutions containing S ≥ 1S⩾1 ions: A molecular-frame theoretical and physical model

dc.contributor.authorSharp, Robert R.en_US
dc.contributor.authorAbernathy, Shawn M.en_US
dc.contributor.authorLohr, Lawrence L. Jr.en_US
dc.date.accessioned2010-05-06T23:27:20Z
dc.date.available2010-05-06T23:27:20Z
dc.date.issued1997-11-15en_US
dc.identifier.citationSharp, Robert; Abernathy, Shawn M.; Lohr, Lawrence L. (1997). "Paramagnetically induced nuclear magnetic resonance relaxation in solutions containing S ≥ 1S⩾1 ions: A molecular-frame theoretical and physical model." The Journal of Chemical Physics 107(19): 7620-7629. <http://hdl.handle.net/2027.42/71257>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71257
dc.description.abstractThe enhancement of nuclear magnetic resonance (NMR) relaxation rates produced by paramagnetic solutes is physically rather different for electron spin S = 1/2S=1/2 paramagnetic species than for S ≥ 1S⩾1 species due to the presence of zero-field splitting interactions in the electron spin Hamiltonians of the latter. When the zfs energy is larger than the electronic Zeeman energy, the electron spin precessional motion is spatially quantized with respect to the molecule-fixed principal axis system (PAS) of the zfs tensor rather than along the external laboratory magnetic field. An analytical theory of the orthorhombic zfs limit has been derived in which the motion of the electron spin variables is described in the zfs-PAS and that of the nuclear spin variables in the laboratory coordinate frame. The resulting theoretical expressions are simple in form and suggest a physically transparent interpretation of the experiment. The NMR relaxation enhancement R1pR1p results from additive contributions, R1x,R1x, R1y,R1y, and R1z,R1z, arising from the molecular-frame Cartesian components of the time-dependent electron spin magnetic moment operator μr(t).μr(t). Each Cartesian component R1rR1r depends on the dipolar power density at the nuclear Larmor frequency that is produced by the corresponding Cartesian component of μr(t).μr(t). The theory displays the dependence of the relaxation enhancement on the variables of molecular structure in a very simple and physically transparent form: R1r∝r−6[1+P2(cos θr)],R1r∝r−6[1+P2(cosθr)], where rr is the interspin distance and cos θrcosθr is the direction cosine of the interspin vector with the rrth principal axis of the zfs tensor. New experimental data are presented for the model S = 1S=1 complex [trans-Ni(II)(acac)2(H2O)2Ni(II)(acac)2(H2O)2] (acac=acetylacetonato)(acac=acetylacetonato) in dioxane solvent. The magnetic field dependence of the proton T1T1 of the axial water ligands has been measured over the range 0.15–1.5 T, the lower end of which corresponds to the zfs limit. The experimental data have been analyzed using the new analytical theory for the zfs-limit regime in conjunction with spin dynamics simulations in the intermediate regime. Dipolar density power plots are presented as graphical devices which clearly exhibit the physical information in the experiment, and which permit a rapid differentiation of the sensitive and insensitive parameters of theory. The data analysis depends strongly on the zfs parameter ∣E∣∣E∣ and on the electron spin relaxation time τS,zτS,z along the zfs-PAS zz-axis, but only very weakly on the other parameters of theory. A fit of the data to theory provided the values ∣E∣ = 1.8±0.1 cm−1∣E∣=1.8±0.1cm−1 and τS,z = 8.0±0.3 ps.τS,z=8.0±0.3ps. © 1997 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent230056 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleParamagnetically induced nuclear magnetic resonance relaxation in solutions containing S ≥ 1S⩾1 ions: A molecular-frame theoretical and physical modelen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71257/2/JCPSA6-107-19-7620-1.pdf
dc.identifier.doi10.1063/1.475111en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceI. Solomon, Phys. Rev. 99, 559 (1955).en_US
dc.identifier.citedreferenceN. Bloembergen, J. Chem. Phys. 27, 572 (1957); 27, 595 (1957).en_US
dc.identifier.citedreferenceN. Bloembergen and L. O. Morgan, J. Chem. Phys. 34, 842 (1961).en_US
dc.identifier.citedreferenceA. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Dover, New York, 1970).en_US
dc.identifier.citedreferenceL. L. Lohr, Mol. Phys. 89, 1397 (1996).en_US
dc.identifier.citedreferenceH. L. Friedman, M. Holz, and H. G. Hertz, J. Chem. Phys. 70, 3369 (1969).en_US
dc.identifier.citedreferenceJ. H. Freed, G. V. Bruno, and C. Polnaszek, J. Chem. Phys. 55, 5270 (1971); 56, 716 (1972).en_US
dc.identifier.citedreferenceN. Benetis, J. Kowalewski, L. Nordenskiold, H. Wennerstrom, and P.-O. Westlund, Mol. Phys. 48, 329 (1983).en_US
dc.identifier.citedreferenceN. Benetis, J. Kowalewski, L. Nordenskiold, H. Wennerstrom, and P.-O. Westlund, J. Magn. Reson. 58, 261 (1984).en_US
dc.identifier.citedreferenceP.-O. Westlund, H. Wennerstrom, L. Nordenskiold, J. Kowalewski, and N. Benetis, J. Magn. Reson. 59, 91 (1984).en_US
dc.identifier.citedreferenceN. Benetis, J. Kowalewski, L. Nordenskiold, and U. Edlund, J. Magn. Reson. 58, 282 (1984).en_US
dc.identifier.citedreferenceI. Bertini, C. Luchinat, M. Mancini, and G. Spina, J. Magn. Reson. 59, 213 (1984).en_US
dc.identifier.citedreferenceT.-H. R. Chen, S.-J. Den, and L.-P. Hwang, Proc. Natl. Sci. Council (Taiwan) 8A, 224 (1984).en_US
dc.identifier.citedreferenceL.-P. Hwang and C.-Y. Ju, J. Chem. Phys. 83, 3775 (1985).en_US
dc.identifier.citedreferenceI. Bertini, C. Luchinat, and J. Kowalewski, J. Magn. Reson. 62, 235 (1985).en_US
dc.identifier.citedreferenceN. Benetis and J. Kowalewski, J. Magn. Reson. 65, 13 (1985).en_US
dc.identifier.citedreferenceL. Banci, I. Bertini, F. Briganti, and C. Luchinat, J. Magn. Reson. 66, 58 (1986).en_US
dc.identifier.citedreferenceP.-L. Wang, J.-H. Lee, S.-M. Huang, and L.-P. Hwang, J. Magn. Reson. 73, 277 (1987).en_US
dc.identifier.citedreferenceR. R. Sharp, J. Chem. Phys. 93, 6921 (1990).en_US
dc.identifier.citedreferenceT. Bayburt and R. R. Sharp, J. Chem. Phys. 92, 5892 (1990).en_US
dc.identifier.citedreferenceH. Fukui, K. Miura, and H. Matsuda, J. Magn. Reson. 88, 311 (1990).en_US
dc.identifier.citedreferenceR. R. Sharp, J. Magn. Reson. 100, 491 (1992).en_US
dc.identifier.citedreferenceT. Bayburt and R. R. Sharp, J. Phys. Chem. 97, 4558 (1993).en_US
dc.identifier.citedreferenceR. R. Sharp, J. Chem. Phys. 98, 912 (1993).en_US
dc.identifier.citedreferenceR. R. Sharp, J. Chem. Phys. 98, 2507 (1993).en_US
dc.identifier.citedreferenceJ.-M. Bovet and R. R. Sharp, J. Chem. Phys. 99, 18 (1993).en_US
dc.identifier.citedreferenceT. Larsson, P.-O. Westlund, J. Kowalewski, and S. H. Koenig, J. Chem. Phys. 101, 1116 (1994).en_US
dc.identifier.citedreferenceI. Bertini, O. Galas, C. Luchinat, and G. Parigi, J. Magn. Reson. A 113, 151 (1995).en_US
dc.identifier.citedreferenceM. Odelius, C. Ribbing, and J. Kowalewski, J. Chem. Phys. 103, 1800 (1995).en_US
dc.identifier.citedreferenceM. Odelius, C. Ribbing, and J. Kowalewski, J. Chem. Phys. 104, 3181 (1996).en_US
dc.identifier.citedreferenceJ. Svoboda, T. Nilsson, J. Kowalewski, P.-O. Westlund, and P. T. Larsson, J. Magn. Reson. 121, 108 (1996).en_US
dc.identifier.citedreferenceP.-O. Westlund, in Dynamics of Solutions and Fluid Mixtures by NMR, edited by J. J. Delpuech (Wiley, New York, 1995), p. 173.en_US
dc.identifier.citedreferenceS. M. Abernathy and R. R. Sharp, J. Chem. Phys. 106, 9032 (1997).en_US
dc.identifier.citedreferenceS. M. Abernathy and R. R. Sharp, J. Phys. Chem. 202, 3692 (1997).en_US
dc.identifier.citedreferenceR. A. Dwek, NMR in Biochemistry (Oxford University Press, Oxford, 1972).en_US
dc.identifier.citedreferenceC.-W. Chen, J. S. Cohen, C. E. Myers, and M. Sohn, FEBS Lett. 168, 70 (1984).en_US
dc.identifier.citedreferenceS. H. Koenig, R. D. Brown, and M. Spillar, Magn. Reson. Med. 4, 252 (1987).en_US
dc.identifier.citedreferenceK. E. Keller and N. Foster, Inorg. Chem. 31, 1353 (1992).en_US
dc.identifier.citedreferenceR. Kubo and K. Tomita, J. Phys. Soc. Jpn. 9, 888 (1954).en_US
dc.identifier.citedreferenceL. Banci, I. Bertini, and C. Luchinat, Nuclear and Electron Relaxation (VCH, New York, 1991), pp. 185–191.en_US
dc.identifier.citedreferenceS. H. Koenig, J. Magn. Reson. 31, 1 (1978).en_US
dc.identifier.citedreferenceZ. Luz and S. Meiboom, J. Chem. Phys. 40, 2686 (1964).en_US
dc.identifier.citedreferenceH. Montgomery and E. C. Lingafelter, Acta Crystallogr. 17, 1481 (1964).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.