Show simple item record

Propagators from integral representations of Green’s functions for the N‐dimensional free‐particle, harmonic oscillator and Coulomb problems

dc.contributor.authorBlinder, S. M.en_US
dc.date.accessioned2010-05-06T23:28:23Z
dc.date.available2010-05-06T23:28:23Z
dc.date.issued1984-04en_US
dc.identifier.citationBlinder, S. M. (1984). "Propagators from integral representations of Green’s functions for the N‐dimensional free‐particle, harmonic oscillator and Coulomb problems." Journal of Mathematical Physics 25(4): 905-909. <http://hdl.handle.net/2027.42/71268>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71268
dc.description.abstractThe radial Green’s functions for the N‐dimensional free‐particle, isotropic harmonic oscillator and Coulomb problems all contain a product of two Bessel or Whittaker functions. After integral representations for these respective products are introduced, each Green’s function exhibits the structure of a Fourier transform. One obtains thereby the Feynman propagators K(r1,r2,t) for the free particle and harmonic oscillator. In the Coulomb case, the Fourier transform involves the quantum number variable and leads instead to the recently defined Sturmian propagator. The well‐known connection between Coulomb and oscillator eigenstates of various dimensionality is manifested in a new way by the structure of the propagators derived here.en_US
dc.format.extent3102 bytes
dc.format.extent285809 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titlePropagators from integral representations of Green’s functions for the N‐dimensional free‐particle, harmonic oscillator and Coulomb problemsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71268/2/JMAPAQ-25-4-905-1.pdf
dc.identifier.doi10.1063/1.526245en_US
dc.identifier.sourceJournal of Mathematical Physicsen_US
dc.identifier.citedreferenceThe form of the N‐dimensional Laplacian is given by J. D. Louck, J. Mol. Spectrosc. 4, 298 (1960).en_US
dc.identifier.citedreferenceSee, for example, S. I. Vetchinkin and V. L. Bachrach, Int. J. Quantum Chem. 6, 143 (1972).en_US
dc.identifier.citedreferenceSee, for example, S. M. Blinder, Foundations of Quantum Dynamics (Academic, New York, 1974), p. 148ff.en_US
dc.identifier.citedreferenceM. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions (National Bureau of Standards, Washington, D.C., 1972), p. 360.en_US
dc.identifier.citedreferenceG. N. Watson, Theory of Bessel Functions, 2nd ed. (Cambridge University, England, 1966), p. 439, Eq. (2).en_US
dc.identifier.citedreferenceReference 4, p. 361, Eq. (9.1.30).en_US
dc.identifier.citedreferenceReference 4, p. 362, Eq. (9.1.69).en_US
dc.identifier.citedreferenceR. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw‐Hill, New York, 1965), p. 58ff; Ref. 3, p. 152.en_US
dc.identifier.citedreferenceReference 4, p. 440, Eq. (10.1.47).en_US
dc.identifier.citedreferenceReference 3, p. 155, Eq. (6.5.56).en_US
dc.identifier.citedreferenceH. Buchholz, The Confluent Hypergeometric Function (Springer, New York, 1969), pp. 32–33, Eqs. (3a), (3b) with z  =  r,λ  =  2,αλ  =  0,β  =  −N/2,A  =  ω,κ  =  E/2ω,μ  =  L+N/2−1.z=r,λ=2,αλ=0,β=−N∕2,A=ω,κ=E∕2ω,μ=L+N∕2−1.en_US
dc.identifier.citedreferenceS. M. Blinder, J. Math. Phys. 22, 306 (1981).en_US
dc.identifier.citedreferenceReference 11, p. 25, Eq. (33).en_US
dc.identifier.citedreferenceReference 11, p. 86, Eq. (5c).en_US
dc.identifier.citedreferenceReference 8, p. 63, Eq. (3.59); Ref. 3, p. 11, Eq. (1.4.29).en_US
dc.identifier.citedreferenceReference 11, p. 139, Eq. (12a).en_US
dc.identifier.citedreferenceA. Erdelyi, ed., Higher Transcendental Functions (McGraw‐Hill, New York, 1953), Vol. 2, p. 189.en_US
dc.identifier.citedreferenceReference 11, p. 212.en_US
dc.identifier.citedreferenceA very similar formula for a harmonic oscillator perturbed by an inverse quadratic potential has been given by D. C. Khandekar and S. V. Lawande, J. Math. Phys. 16, 384 (1975).en_US
dc.identifier.citedreferenceReference 3, p. 159, Eq. (6.5.87).en_US
dc.identifier.citedreferenceReference 11, with z  =  r,λ  =  1,β  = (1−N)/2,A  =  −2ik,κ  =  iZ/k,μ/2  =  L+N/2−1.z=r,λ=1,β=(1−N)∕2,A=−2ik,κ=iZ∕k,μ∕2=L+N∕2−1.en_US
dc.identifier.citedreferenceL. C. Hostler, J. Math. Phys. 11, 2966 (1970).en_US
dc.identifier.citedreferenceS. M. Blinder, “Sturmian propagator for the nonrelativistic Coulomb problem,” Phys. Rev. A (in press).en_US
dc.identifier.citedreferenceM. Rotenberg, Ann. Phys. (NY) 19, 262 (1962); Adv. At. Mol. Phys. 6, 233 (1970).en_US
dc.identifier.citedreferenceE. Schrödinger, Proc. R. Irish Acad. A 46, 183 (1941).en_US
dc.identifier.citedreferenceA. Giovannini and T. Tonietti, Nuovo Cimento A 54, 1 (1968).en_US
dc.identifier.citedreferenceJ. Schwinger, unpublished lecture notes; see also G. Bahm, Lectures on Quantum Mechanics (Benjamin, Reading, MA, 1969), p. 179.en_US
dc.identifier.citedreferenceD. Bergmann and Y. Frishman, J. Math. Phys. 6, 1855 (1965).en_US
dc.identifier.citedreferenceReference 5, p. 140, Eq. (3) with v  =  0,μ  =  1,k  =  cos(θ/2),Pl(cos θ)  =  (−)2F11[−1,1+1;cos2(θ/2)].v=0,μ=1,k=cos(θ∕2),Pl(cosθ)=(−)2F11[−1,1+1;cos2(θ∕2)].en_US
dc.identifier.citedreferenceL. Hostler, J. Math. Phys. 5, 591 (1964).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.