Propagators from integral representations of Green’s functions for the N‐dimensional free‐particle, harmonic oscillator and Coulomb problems
dc.contributor.author | Blinder, S. M. | en_US |
dc.date.accessioned | 2010-05-06T23:28:23Z | |
dc.date.available | 2010-05-06T23:28:23Z | |
dc.date.issued | 1984-04 | en_US |
dc.identifier.citation | Blinder, S. M. (1984). "Propagators from integral representations of Green’s functions for the N‐dimensional free‐particle, harmonic oscillator and Coulomb problems." Journal of Mathematical Physics 25(4): 905-909. <http://hdl.handle.net/2027.42/71268> | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/71268 | |
dc.description.abstract | The radial Green’s functions for the N‐dimensional free‐particle, isotropic harmonic oscillator and Coulomb problems all contain a product of two Bessel or Whittaker functions. After integral representations for these respective products are introduced, each Green’s function exhibits the structure of a Fourier transform. One obtains thereby the Feynman propagators K(r1,r2,t) for the free particle and harmonic oscillator. In the Coulomb case, the Fourier transform involves the quantum number variable and leads instead to the recently defined Sturmian propagator. The well‐known connection between Coulomb and oscillator eigenstates of various dimensionality is manifested in a new way by the structure of the propagators derived here. | en_US |
dc.format.extent | 3102 bytes | |
dc.format.extent | 285809 bytes | |
dc.format.mimetype | text/plain | |
dc.format.mimetype | application/pdf | |
dc.publisher | The American Institute of Physics | en_US |
dc.rights | © The American Institute of Physics | en_US |
dc.title | Propagators from integral representations of Green’s functions for the N‐dimensional free‐particle, harmonic oscillator and Coulomb problems | en_US |
dc.type | Article | en_US |
dc.subject.hlbsecondlevel | Physics | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/71268/2/JMAPAQ-25-4-905-1.pdf | |
dc.identifier.doi | 10.1063/1.526245 | en_US |
dc.identifier.source | Journal of Mathematical Physics | en_US |
dc.identifier.citedreference | The form of the N‐dimensional Laplacian is given by J. D. Louck, J. Mol. Spectrosc. 4, 298 (1960). | en_US |
dc.identifier.citedreference | See, for example, S. I. Vetchinkin and V. L. Bachrach, Int. J. Quantum Chem. 6, 143 (1972). | en_US |
dc.identifier.citedreference | See, for example, S. M. Blinder, Foundations of Quantum Dynamics (Academic, New York, 1974), p. 148ff. | en_US |
dc.identifier.citedreference | M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions (National Bureau of Standards, Washington, D.C., 1972), p. 360. | en_US |
dc.identifier.citedreference | G. N. Watson, Theory of Bessel Functions, 2nd ed. (Cambridge University, England, 1966), p. 439, Eq. (2). | en_US |
dc.identifier.citedreference | Reference 4, p. 361, Eq. (9.1.30). | en_US |
dc.identifier.citedreference | Reference 4, p. 362, Eq. (9.1.69). | en_US |
dc.identifier.citedreference | R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw‐Hill, New York, 1965), p. 58ff; Ref. 3, p. 152. | en_US |
dc.identifier.citedreference | Reference 4, p. 440, Eq. (10.1.47). | en_US |
dc.identifier.citedreference | Reference 3, p. 155, Eq. (6.5.56). | en_US |
dc.identifier.citedreference | H. Buchholz, The Confluent Hypergeometric Function (Springer, New York, 1969), pp. 32–33, Eqs. (3a), (3b) with z = r,λ = 2,αλ = 0,β = −N/2,A = ω,κ = E/2ω,μ = L+N/2−1.z=r,λ=2,αλ=0,β=−N∕2,A=ω,κ=E∕2ω,μ=L+N∕2−1. | en_US |
dc.identifier.citedreference | S. M. Blinder, J. Math. Phys. 22, 306 (1981). | en_US |
dc.identifier.citedreference | Reference 11, p. 25, Eq. (33). | en_US |
dc.identifier.citedreference | Reference 11, p. 86, Eq. (5c). | en_US |
dc.identifier.citedreference | Reference 8, p. 63, Eq. (3.59); Ref. 3, p. 11, Eq. (1.4.29). | en_US |
dc.identifier.citedreference | Reference 11, p. 139, Eq. (12a). | en_US |
dc.identifier.citedreference | A. Erdelyi, ed., Higher Transcendental Functions (McGraw‐Hill, New York, 1953), Vol. 2, p. 189. | en_US |
dc.identifier.citedreference | Reference 11, p. 212. | en_US |
dc.identifier.citedreference | A very similar formula for a harmonic oscillator perturbed by an inverse quadratic potential has been given by D. C. Khandekar and S. V. Lawande, J. Math. Phys. 16, 384 (1975). | en_US |
dc.identifier.citedreference | Reference 3, p. 159, Eq. (6.5.87). | en_US |
dc.identifier.citedreference | Reference 11, with z = r,λ = 1,β = (1−N)/2,A = −2ik,κ = iZ/k,μ/2 = L+N/2−1.z=r,λ=1,β=(1−N)∕2,A=−2ik,κ=iZ∕k,μ∕2=L+N∕2−1. | en_US |
dc.identifier.citedreference | L. C. Hostler, J. Math. Phys. 11, 2966 (1970). | en_US |
dc.identifier.citedreference | S. M. Blinder, “Sturmian propagator for the nonrelativistic Coulomb problem,” Phys. Rev. A (in press). | en_US |
dc.identifier.citedreference | M. Rotenberg, Ann. Phys. (NY) 19, 262 (1962); Adv. At. Mol. Phys. 6, 233 (1970). | en_US |
dc.identifier.citedreference | E. Schrödinger, Proc. R. Irish Acad. A 46, 183 (1941). | en_US |
dc.identifier.citedreference | A. Giovannini and T. Tonietti, Nuovo Cimento A 54, 1 (1968). | en_US |
dc.identifier.citedreference | J. Schwinger, unpublished lecture notes; see also G. Bahm, Lectures on Quantum Mechanics (Benjamin, Reading, MA, 1969), p. 179. | en_US |
dc.identifier.citedreference | D. Bergmann and Y. Frishman, J. Math. Phys. 6, 1855 (1965). | en_US |
dc.identifier.citedreference | Reference 5, p. 140, Eq. (3) with v = 0,μ = 1,k = cos(θ/2),Pl(cos θ) = (−)2F11[−1,1+1;cos2(θ/2)].v=0,μ=1,k=cos(θ∕2),Pl(cosθ)=(−)2F11[−1,1+1;cos2(θ∕2)]. | en_US |
dc.identifier.citedreference | L. Hostler, J. Math. Phys. 5, 591 (1964). | en_US |
dc.owningcollname | Physics, Department of |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.