Show simple item record

Effect of zero field splitting interactions on the paramagnetic relaxation enhancement of nuclear spin relaxation rates in solution

dc.contributor.authorSharp, Robert R.en_US
dc.date.accessioned2010-05-06T23:32:24Z
dc.date.available2010-05-06T23:32:24Z
dc.date.issued1993-01-15en_US
dc.identifier.citationSharp, Robert R. (1993). "Effect of zero field splitting interactions on the paramagnetic relaxation enhancement of nuclear spin relaxation rates in solution." The Journal of Chemical Physics 98(2): 912-921. <http://hdl.handle.net/2027.42/71310>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71310
dc.description.abstractThe enhancement of nuclear spin relaxation rate R1m that is produced by paramagnetic metal ions in solution (the NMR‐PRE) has been investigated for electron spin systems with S=1 using recently developed relaxation theory that incorporates both Zeeman and zero field splitting (zfs) interactions of arbitrary magnitude in the electron spin Hamiltonian. The zfs interaction gives rise to important qualitative features which have no analog in the Zeeman‐limit theory. The three principal physical phenomena responsible for these effects are (1) alterations in the geometry of the magnetic dipole–dipole coupling energy due to requantization of the electron spin from laboratory to molecular axes; (2) the crossing or ‘‘pinching’’ of spin energy levels that occurs in the regime of field strengths between the zfs and Zeeman limits; and (3) an effective magnetic field dependence in the reorientational correlation time that results from a change in the appropriate definition of this quantity in the intermediate regime. In the zfs limit and in the intermediate regime, the field dispersion profile depends strongly on the position of the nuclear spin with respect to the molecular coordinate axes. For equatorial positions of the nuclear spin, the principle qualitative feature of the dispersion profile is a strong increase in R1m with increasing field strength coupled, in most cases, with a shallow local R1m maximum; both features are centered near the cross‐over field between the limits. For axial positions, the profile exhibits a feature that is superficially similar to those characteristic of Zeeman‐limit theory, but which is fundamentally different in quantitative properties and in physical origin. As a test of theoretical predictions, the experimental magnetic field profile of the NMR‐PRE of the hexaquo‐Ni(II) cation, an S=1 model system that has previously been studied extensively, has been reinterpreted. It is shown that the major qualitative features of the experimental field profile result specifically from physical effects of the zfs interaction and are closely related to the phenomenon of requantization of the electron spin in the intermediate regime.en_US
dc.format.extent3102 bytes
dc.format.extent1266253 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleEffect of zero field splitting interactions on the paramagnetic relaxation enhancement of nuclear spin relaxation rates in solutionen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71310/2/JCPSA6-98-2-912-1.pdf
dc.identifier.doi10.1063/1.464255en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceI. Solomon, Phys. Rev. 99, 559 (1955).en_US
dc.identifier.citedreferenceN. Bloembergen, J. Chem. Phys. 27, 572 (1957); 27, 595 (1957).en_US
dc.identifier.citedreferenceN. Bloembergen and L. O. Morgan, J. Chem. Phys. 34, 842 (1961).en_US
dc.identifier.citedreferenceR. R. Sharp, J. Chem. Phys. 93, 6921 (1990).en_US
dc.identifier.citedreferenceT. Bayburt and R. R. Sharp, J. Chem. Phys. 92, 5892 (1990).en_US
dc.identifier.citedreferenceR. R. Sharp, J. Magn. Reson. 100, 491 (1992).en_US
dc.identifier.citedreferenceN. Benetis, J. Kowaleski, L. Nordenskiold, H. Wennerstrom, and P.-O. Westlund, Mol. Phys. 48, 329 (1983).en_US
dc.identifier.citedreferenceN. Benetis and J. Kowaleski, J. Magn. Reson. 65, 13 (1985).en_US
dc.identifier.citedreferenceN. Benetis, J. Kowalewski, L. Nordenskiold, H. Wennerstrom, and P.-O. Westlund, Mol. Phys. 50, 515 (1983).en_US
dc.identifier.citedreferenceU. Lindner, Ann. Phys. (Leipzig) 16, 319 (1965).en_US
dc.identifier.citedreferenceH. L. Friedman, M. Holz, and H. G. Hertz, J. Chem. Phys. 70, 3369 (1979).en_US
dc.identifier.citedreferenceL. O. Morgan and A. W. Nolle, J. Chem. Phys. 31, 365 (1959).en_US
dc.identifier.citedreferenceD. B. Bechtold, G. Liu, H. W. Dodgen, and J. P. Hunt, J. Phys. Chem. 82, 333 (1978).en_US
dc.identifier.citedreferenceJ. W. Neely and R. E. Connick, J. Am. Chem. Soc. 94, 3420 (1972).en_US
dc.identifier.citedreferenceJ. Granot, A. M. Achlama, and D. Fiat, J. Chem. Phys. 61, 3043 (1974).en_US
dc.identifier.citedreferenceH. G. Hertz and M. Holz, J. Magn. Reson. 63, 64 (1985).en_US
dc.identifier.citedreferenceJ. Kowalewski, T. Larsson, and P.-O. Westlund, J. Magn. Reson. 74, 56 (1987).en_US
dc.identifier.citedreferenceP.-O. Westlund, N. Benetis, and H. Wennerstrom, Mol. Phys. 61, 177 (1987).en_US
dc.identifier.citedreferenceW. T. Huntress, Adv. Nucl. Magn. Reson. Spectrosc. 4, 2 (1970).en_US
dc.identifier.citedreferenceZ. Luz and S. Meiboom, J. Chem. Phys. 40, 2686 (1965).en_US
dc.identifier.citedreferenceA. Abragam, The Principles of Nuclear Magnetism (Oxford University, Oxford, 1961), Chap. 8.en_US
dc.identifier.citedreferenceA. D. McLachlan, Proc. R. Soc. London Ser. A 280, 271∗ (1964).en_US
dc.identifier.citedreferenceD. T. Pegg and D. M. Doddrell, Aust. J. Chem. 29, 1869 (1976).en_US
dc.identifier.citedreferenceD. T. Pegg and D. M. Doddrell, Aust. J. Chem. 31, 475 (1978).en_US
dc.identifier.citedreferenceD. T. Pegg, D. M. Doddrell, M. R. Bendall, and A. K. Gregson, Aust. J. Chem. 29 1885 (1976).en_US
dc.identifier.citedreferenceJ. H. Freed, G. V. Bruno, and C. Polnaszek, J. Chem. Phys. 55, 5270 (1971).en_US
dc.identifier.citedreferenceM. Rosi and C. W. Bauschlicher, Jr., J. Chem. Phys. 90, 7264 (1989).en_US
dc.identifier.citedreferenceB. H. O’Connor and D. H. Dale, Acta Crystallogr. 21, 705 (1966).en_US
dc.identifier.citedreferenceH. L. Friedman and L. Lewis, J. Solut. Chem. 5, 445 (1976).en_US
dc.identifier.citedreferenceA. Bencini and D. Gatteschi, Trans. Metal Chem. 7, 1 (1982).en_US
dc.identifier.citedreferenceW. M. Pontuschka, A. Pinccini, J. A. Quadros, and S. Isotani, Phys. Lett. A 44, 57 (1973).en_US
dc.identifier.citedreferenceR. S. Rubins, J. D. Clark, and S. K. Jani, J. Chem. Phys. 67, 893 (1977).en_US
dc.identifier.citedreferenceC. Ribbing, M. Odelius, A. Laaksonen, J. Kowalewski, and B. Roos, Int. J. Quantum Chem, Quantum Chem. Symp. 24, 295 (1990).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.