Show simple item record

The effects of librations on the 13C13C chemical shift and 2H2H electric field gradient tensors in β-calcium formate

dc.contributor.authorHallock, Kevin J.en_US
dc.contributor.authorLee, Dong-Kuken_US
dc.contributor.authorRamamoorthy, Ayyalusamyen_US
dc.date.accessioned2010-05-06T23:32:35Z
dc.date.available2010-05-06T23:32:35Z
dc.date.issued2000-12-22en_US
dc.identifier.citationHallock, Kevin J.; Lee, Dong Kuk; Ramamoorthy, A. (2000). "The effects of librations on the 13C13C chemical shift and 2H2H electric field gradient tensors in β-calcium formate." The Journal of Chemical Physics 113(24): 11187-11193. <http://hdl.handle.net/2027.42/71312>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71312
dc.description.abstractThe magnitudes and orientations of the principal elements of the 13C13C chemical shift anisotropy (CSA) tensor in the molecular frame of the formate ion in β-calcium formate is determined using one-dimensional dipolar-shift spectroscopy. The magnitudes of the principal elements of the 13C CSA13CCSA tensor are σ11C = 104 ppm,σ11C=104ppm, σ22C = 179 ppm,σ22C=179ppm, and σ33C = 233 ppm.σ33C=233ppm. The least shielding element of the 13C CSA13CCSA tensor, σ33C,σ33C, is found to be collinear with the C–H bond. The temperature dependence of the 13C CSA13CCSA and the 2H2H quadrupole coupling tensors in β-calcium formate are analyzed for a wide range of temperature (173–373 K). It was found that the span of the 13C CSA13CCSA and the magnitude of the 2H2H quadrupole coupling interactions are averaged with the increasing temperature. The experimental results also show that the 2H2H quadrupole coupling tensor becomes more asymmetric with increasing temperature. A librational motion about the σ22Cσ22C axis of the 13C CSA13CCSA tensor is used to model the temperature dependence of the 13C CSA13CCSA tensor. The temperature dependence of the mean-square amplitude of the librational motion is found to be ⟨α2⟩ = 2.6×10−4(T) rad2⟨α2⟩=2.6×10−4(T)rad2 K−1.K−1. The same librational motion also accounts for the temperature-dependence of the 2H2H quadrupole coupling tensor after the relative orientation of the 13C CSA13CCSA and 2H2H electric field gradient tensors are taken into account. Reconsideration of the results of a previous study found that the librational motion, not the vibrational motion, accounts for an asymmetry in the 1H–13C1H–13C dipolar coupling tensor of α-calcium formate at room temperature. © 2000 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent110970 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleThe effects of librations on the 13C13C chemical shift and 2H2H electric field gradient tensors in β-calcium formateen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1005en_US
dc.contributor.affiliationumDepartment of Chemistry and Biophysics Research Division, The University of Michigan, Ann Arbor, Michigan 48109-1005en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71312/2/JCPSA6-113-24-11187-1.pdf
dc.identifier.doi10.1063/1.1326475en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceA. Naito, A. Fukutani, M. Uitdehaag, S. Tuzi, and H. Saito, J. Mol. Struct. JMOSB4441, 231 (1998).en_US
dc.identifier.citedreferenceY. Ishii, T. Terao, and S. Hayashi, J. Chem. Phys. JCPSA6107, 2760 (1997).en_US
dc.identifier.citedreferenceE. R. Henry and A. Szabo, J. Chem. Phys. JCPSA682, 4753 (1985).en_US
dc.identifier.citedreferenceS. Sykora, J. Vogt, H. Bosiger, and P. Diehl, J. Magn. Reson. JOMRA436, 53 (1979).en_US
dc.identifier.citedreferenceG. Soda and T. Chiba, J. Phys. Soc. Jpn. JUPSAU26, 249 (1969).en_US
dc.identifier.citedreferenceM. G. Usha, W. L. Peticolas, and R. J. Wittebort, Biochemistry BICHAW30, 3955 (1991).en_US
dc.identifier.citedreferenceW. Hu, N. D. Lazo, and T. A. Cross, Biochemistry BICHAW34, 14138 (1995).en_US
dc.identifier.citedreferenceR. S. Krishnan and P. S. Ramanujam, J. Raman Spectrosc. JRSPAF1, 533 (1973).en_US
dc.identifier.citedreferenceN. Narsimlu and G. S. Sastry, Solid State Commun. SSCOA4100, 687 (1996).en_US
dc.identifier.citedreferenceA. M. Heyns, O. T. Van Niekerk, P. W. Richter, and K. J. Range, J. Phys. Chem. Solids JPCSAW49, 1133 (1988).en_US
dc.identifier.citedreferenceS. Abraham and G. Aruldhas, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. SAMCAS51, 79 (1995).en_US
dc.identifier.citedreferenceK. Mouaïne, P. Becker, and C. Carabatos-Nédelec, Phys. Status Solidi B PSSBBD200, 273 (1997).en_US
dc.identifier.citedreferenceK. M. Rao and C. K. Narayanaswamy, Indian J. Pure Appl. Phys. IJOPAU7, 809 (1969).en_US
dc.identifier.citedreferenceD. Stoilova and V. Vassileva, Cryst. Res. Technol. CRTEDF34, 397 (1999).en_US
dc.identifier.citedreferenceT. Nakai, J. Ashida, and T. Terao, Mol. Phys. MOPHAM67, 839 (1989).en_US
dc.identifier.citedreferenceA. E. Bennett, C. M. Rienstra, M. Auger, K. V. Lakshmi, and R. G. Griffin, J. Chem. Phys. JCPSA6103, 6951 (1995).en_US
dc.identifier.citedreferenceD. K. Lee and A. Ramamoorthy, J. Magn. Reson. JMARF3133, 204 (1998).en_US
dc.identifier.citedreferenceM. Lee and W. I. Goldburg, Phys. Rev. PRVAAH140, A1261 (1965).en_US
dc.identifier.citedreferenceJ. H. Davis, K. R. Jeffrey, M. Bloom, M. I. Valic, and T. P. Higgs, Chem. Phys. Lett. CHPLBC42, 390 (1976).en_US
dc.identifier.citedreferenceC. Comel and B. F. Mentzen, J. Solid State Chem. JSSCBI9, 210 (1974).en_US
dc.identifier.citedreferenceM. Matsui, T. Watanabe, N. Kamijo, R. L. Lapp, and R. A. Jacobson, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR36, 1081 (1980).en_US
dc.identifier.citedreferenceY. Wei, D. K. Lee, and A. Ramamoorthy, Chem. Phys. Lett. CHPLBC324, 20 (2000).en_US
dc.identifier.citedreferenceN. Burger, H. Fuess, and S. A. Mason, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR33, 1968 (1977).en_US
dc.identifier.citedreferenceJ. L. Ackerman, J. Tegenfel, and J. S. Waugh, J. Am. Chem. Soc. JACSAT96, 6843 (1974).en_US
dc.identifier.citedreferenceE. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra (Dover, New York, 1980).en_US
dc.identifier.citedreferenceS. Califano, Vibrational States (Wiley, London, 1976).en_US
dc.identifier.citedreferenceS. J. Cyvin, Molecular Vibrations and Mean Square Amplitudes (Universitetsforlaget, Oslo, 1968).en_US
dc.identifier.citedreferenceY. Morino, K. Kuchitsu, A. Takahashi, and K. Maeda, J. Chem. Phys. JCPSA621, 1927 (1953).en_US
dc.identifier.citedreferenceK. G. Kidd and H. H. Mantsch, J. Mol. Spectrosc. JMOSA385, 375 (1981).en_US
dc.identifier.citedreferenceK. Venkateswarlu, P. Thirugnanasambandam, and C. Balasubramanian, Z. Phys. Chem. (Leipzig) ZPCLAH218, 7 (1961).en_US
dc.identifier.citedreferenceA. K. Jameson, J. W. Moyer, and C. J. Jameson, J. Chem. Phys. JCPSA668, 2873 (1978).en_US
dc.identifier.citedreferenceR. J. Wittebort, E. T. Olejniczak, and R. G. Griffin, J. Chem. Phys. JCPSA686, 5411 (1987).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.