Show simple item record

Anisotropic Electron Spin Resonance Spectrum of PF2 in Low‐Temperature Matrices

dc.contributor.authorWei, Michael S.en_US
dc.contributor.authorCurrent, Jerry H.en_US
dc.contributor.authorGendell, Julienen_US
dc.date.accessioned2010-05-06T23:32:58Z
dc.date.available2010-05-06T23:32:58Z
dc.date.issued1970-02-01en_US
dc.identifier.citationWei, Michael S.; Current, Jerry H.; Gendell, Julien (1970). "Anisotropic Electron Spin Resonance Spectrum of PF2 in Low‐Temperature Matrices." The Journal of Chemical Physics 52(3): 1592-1602. <http://hdl.handle.net/2027.42/71316>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71316
dc.description.abstractThe anisotropic electron spin resonance spectrum of the PF2 radical has been observed. P2F2 was thermally decomposed by passing the gas over a hot wire. The radicals produced were trapped in an argon matrix on a flat sapphire rod held at 20°K. The same radicals were formed by photolysis of PF2H in an argon matrix. In contrast to N2F4, PF2 radicals were not detected unless the P2F4 was heated above 200°C. The observed 12‐line ESR spectrum is interpreted as being due to randomly oriented nonrotating radicals with axially symmetric gg and hyperfine tensors. Based on computer‐simulated spectra, the following assignment has been made: g‖  =  2.0011,g⊥  =  1.9922;C‖  =  (P)  =  307G,C⊥(P)  =  − 83.0G;C‖(F)  =  127G,C⊥(F)  =  33.5Gg‖=2.0011,g⊥=1.9922;C‖=(P)=307G,C⊥(P)=−83.0G;C‖(F)=127G,C⊥(F)=33.5G. The same radical was also trapped in different matrices. The nature of the trapping sites and the effect of environment on the radicals is discussed. Comparison with data available for NF2 indicates that the unpaired electron in PF2 is localized on the central atom to a greater extent than it is in NF2. Extended Hückel calculations also give this result.en_US
dc.format.extent3102 bytes
dc.format.extent830182 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleAnisotropic Electron Spin Resonance Spectrum of PF2 in Low‐Temperature Matricesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michigan 48104en_US
dc.contributor.affiliationumDepartment of Chemistry, Oakland University, Rochester, Michiganen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71316/2/JCPSA6-52-3-1592-1.pdf
dc.identifier.doi10.1063/1.1673173en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceJ. K. S. Wan, J. R. Morton, and H. J. Bernstein, Can. J. Chem. 44, 1957 (1966).en_US
dc.identifier.citedreferenceR. W. Fessenden and R. H. Schuler, J. Chem. Phys. 45, 1845 (1966).en_US
dc.identifier.citedreferenceR. Ettinger and C. B. Colburn, Inorg. Chem. 2, 1311 (1963).en_US
dc.identifier.citedreferenceH. E. Dodrenbos and B. R. Loy, J. Chem. Phys. 39, 293 (1963).en_US
dc.identifier.citedreferenceM. Lustig, J. K. Ruff, and C. B. Colburn, J. Am. Chem. Soc. 88, 3875 (1966).en_US
dc.identifier.citedreferenceK. W. Morse and R. W. Parry, J. Am. Chem. Soc. 89, 172 (1967).en_US
dc.identifier.citedreferenceR. W. Rudolph, R. C. Taylor, and R. W. Parry, J. Am. Chem. Soc. 88, 3729 (1966).en_US
dc.identifier.citedreferenceR. W. Rudolph, Ph.D. thesis, University of Michigan, Ann Arbor, Mich., 1966.en_US
dc.identifier.citedreferenceD. Solan and P. L. Timms, Chem. Commun. 1968, 1541.en_US
dc.identifier.citedreferenceB. G. Segal, M. Kaplan, and G. K. Frankel, J. Chem. Phys. 43, 4191 (1965).en_US
dc.identifier.citedreferenceJ. B. Farmer, M. C. L. Gerry, and C. A. McDowell, Mol. Phys. 8, 253 (1964).en_US
dc.identifier.citedreferenceD. Solan, University of California, Berkeley, Calif, (personal communication, 1969).en_US
dc.identifier.citedreferenceA. E. Douglas and M. Frąckowiak, Can. J. Phys. 40, 832 (1962).en_US
dc.identifier.citedreferenceM. D. Harmony, R. J. Myers, L. J. Schoen, D. R. Lide, and D. E. Mann, J. Chem. Phys. 35, 1129 (1961).en_US
dc.identifier.citedreferenceA. D. Walsh, J. Chem. Soc. 1953, 2266.en_US
dc.identifier.citedreferenceA. Carrington and A. D. McLachlan, Introduction to Magnetic Resonance (Harper and Row Publishers, Inc., New York, 1967), p. 110.en_US
dc.identifier.citedreferenceP. H. Kasai, W. Weltner, Jr., and E. B. Whipple, J. Chem. Phys. 42, 1120 (1965).en_US
dc.identifier.citedreferenceP. H. Kasai, E. B. Whipple, and W. Weltner, Jr., J. Chem. Phys., 44, 2581 (1966).en_US
dc.identifier.citedreferenceR. Lefebvre and J. Maruani, J. Chem. Phys. 42, 1480 (1965).en_US
dc.identifier.citedreferenceJ. Maruani, C. A. McDowell, H. Nakajima, and P. Raghunathan, Mol. Phys. 14, 349 (1968).en_US
dc.identifier.citedreferenceThe choice of the signs for the components of the hyperfine tensors is based on two factors. The first is that the parallel dipolar parts of the tensor (B∥)(B∥) should be positive, and the second is that the isotropic part of the hyperfine tensor should be approximately equal to the isotropic values reported by Wan and Morton. (See Sec. V.B.) These assignments result in positive signs for the isotropic parts of the hyperfine tensors.en_US
dc.identifier.citedreferenceThe shape of a calculated derivative spectrum is apparently most sensitive to the choice of parameters in the vicinity of the canonical orientations. The values of λ∥λ∥ and λ⊥λ⊥ are of prime importance, and the way in which the width varies with orientation is much less significant.en_US
dc.identifier.citedreferenceA. Hinchliffe and J. N. Murrell, Mol. Phys. 14, 147 (1968).en_US
dc.identifier.citedreferenceP. H. Kasai and E. B. Whipple, Mol. Phys. 9, 497 (1965).en_US
dc.identifier.citedreferenceA. J. Stone, Proc. Roy. Soc. (London) 271A, 424 (1963).en_US
dc.identifier.citedreferenceH. C. Longuet‐Higgins and A. J. Stone, Mol. Phys. 5, 417 (1962).en_US
dc.identifier.citedreferenceR. Hoffmann, J. Chem. Phys. 39, 1397 (1963).en_US
dc.identifier.citedreferenceR. L. Kuczkowski, J. Am. Chem. Soc. 90, 1905 (1968).en_US
dc.identifier.citedreferenceD. R. Lide, Jr., J. Chem. Phys. 38, 456 (1963).en_US
dc.identifier.citedreferenceNumerous examples of changes in the g and the hyperfine tensors with a change in matrix environment may be cited. An extensive tabulation of data for NO2NO2 may be found in: T. J. Schaafsma, G. A. V. D. Velde, and J. Kommandeur, Mol. Phys. 14, 501 (1968). Other examples are tabulated by P. W. Atkins and M. C. R. Symons, The Structure of Inorganic Radicals (Elsevier Publ. Corp., New York, 1967).en_US
dc.identifier.citedreferenceP. W. Atkins and M. C. R. Symons, The Structure of Inorganic Radicals (Elsevier Publ. Corp., New York, 1967), p. 21.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.