Show simple item record

Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures

dc.contributor.authorGupta, S.en_US
dc.contributor.authorFrankel, M. Y.en_US
dc.contributor.authorValdmanis, J. A.en_US
dc.contributor.authorWhitaker, John F.en_US
dc.contributor.authorMourou, Gerard A.en_US
dc.contributor.authorSmith, F. W.en_US
dc.contributor.authorCalawa, A. R.en_US
dc.date.accessioned2010-05-06T23:33:10Z
dc.date.available2010-05-06T23:33:10Z
dc.date.issued1991-12-16en_US
dc.identifier.citationGupta, S.; Frankel, M. Y.; Valdmanis, J. A.; Whitaker, J. F.; Mourou, G. A.; Smith, F. W.; Calawa, A. R. (1991). "Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures." Applied Physics Letters 59(25): 3276-3278. <http://hdl.handle.net/2027.42/71318>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71318
dc.description.abstractEpitaxial GaAs grown by molecular beam epitaxy (MBE) at low substrate temperatures is observed to have a significantly shorter carrier lifetime than GaAs grown at normal substrate temperatures. Using femtosecond time‐resolved‐reflectance techniques, a sub‐picosecond (<0.4 ps) carrier lifetime has been measured for GaAs grown by MBE at ∼200°C and annealed at 600 °C. With the same material as a photoconductive switch we have measured electrical pulses with a full‐width at half‐maximum of 0.6 ps using the technique of electro‐optic sampling. Good responsivity for a photoconductive switch is observed, corresponding to a mobility of the photoexcited carriers of ∼120–150 cm2/V s. GaAs grown by MBE at 200 °C and annealed at 600 °C is also semi‐insulating, which results in a low dark current in the switch application. The combination of fast recombination lifetime, high carrier mobility, and high resistivity makes this material ideal for a number of subpicosecond photoconductive applications.en_US
dc.format.extent3102 bytes
dc.format.extent446394 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleSubpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperaturesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUltrafast Science Laboratory, Room 1006 IST Building, University of Michigan, 2200 Bonisteel, Ann Arbor, Michigan 48109‐2099en_US
dc.contributor.affiliationotherLincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173‐9108en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71318/2/APPLAB-59-25-3276-1.pdf
dc.identifier.doi10.1063/1.105729en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceD. H. Auston, Picosecond Optoelectronic Devices, edited by C. H. Lee (Academic, Orlando, FL, 1984), p. 73.en_US
dc.identifier.citedreferenceJ. A. Valdmanis and G. Mourou, IEEE J. Quantum Electron. QE-22, 69 (1986).en_US
dc.identifier.citedreferenceM. van Exter, Ch. Fattinger, and D. Grischkowsky, Appl. Phys. Lett. 55, 337 (1989).en_US
dc.identifier.citedreferenceF. J. Leonberger and P. F. Moulton, Appl. Phys. Lett. 35, 712 (1979).en_US
dc.identifier.citedreferenceD. H. Auston, P. Lavallard, N. Sol, and D. Kaplan, Appl. Phys. Lett. 36, 66 (1980).en_US
dc.identifier.citedreferenceF. E. Doany, D. Grischkowsky, and C. C. Chi, Appl. Phys. Lett. 50, 460 (1987).en_US
dc.identifier.citedreferenceF. W. Smith, H. Q. Le, V. Diadiuk, M. A. Hollis, A. R. Calawa, S. Gupta, M. Frankel, D. R. Dykaar, G. Mourou, and T. Y. Hsiang, Appl. Phys. Lett. 54, 890 (1989).en_US
dc.identifier.citedreferenceS. Gupta, J. Pamulapati, J. Chwalek, P. K. Bhattacharya, and G. Mourou, Ultrafast Phenomena VII, edited by C. B. Harris, E. P. Ippen, G. Mourou, and A. H. Zewail (Springer, Berlin, Heidelberg, 1990), p. 297.en_US
dc.identifier.citedreferenceM. Kaminska, E. R. Weber, Z. Liliental-Weber, R. Leon, and Z. U. Rek, J. Vac. Sci. Technol. B 7, 710 (1989).en_US
dc.identifier.citedreferenceA. C. Warren, J. M. Woodall, J. L. Freeouf, D. Grischkowsky, D. C. McInturff, M. R. Melloch, and N. Otsuka, Appl. Phys. Lett. 57, 1331 (1990).en_US
dc.identifier.citedreferenceF. W. Smith, Ph.D. thesis, Massachusetts Institute of Technology, 1990.en_US
dc.identifier.citedreferenceZ. Liliental-Weber, A. Claverie, J. Washburn, F. W. Smith, and A. R. Calawa, Appl. Phys. A 53, 141 (1991).en_US
dc.identifier.citedreferenceJ. Kuhl, E. O. Gobel, Th. Pfeiffer, and A. Jonietz, Appl. Phys. A 34, 105 (1984).en_US
dc.identifier.citedreferenceC. V. Shank, D. H. Auston, E. P. Ippen, and O. Teschke, Solid State Commun. 26, 567 (1978).en_US
dc.identifier.citedreferenceB. R. Bennett, R. A. Soref, and J. A. del Alamo, IEEE J. Quantum Electron. QE-26, 113 (1990).en_US
dc.identifier.citedreferenceS. Gupta, P. K. Bhattacharya, J. Pamulapati, and G. Mourou, Appl. Phys. Lett. 57, 1543 (1990).en_US
dc.identifier.citedreferenceJ. A. Valdmanis, Electron. Lett. 23, 1308 (1987).en_US
dc.identifier.citedreferenceR. S. Crandall and I. Balberg, Appl. Phys. Lett. 58, 508 (1991).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.