Show simple item record

Yielding Behavior of Glassy Amorphous Polymers

dc.contributor.authorBrady, T. E.en_US
dc.contributor.authorYeh, Gregory S. Y.en_US
dc.date.accessioned2010-05-06T23:34:18Z
dc.date.available2010-05-06T23:34:18Z
dc.date.issued1971-11en_US
dc.identifier.citationBrady, T. E.; Yeh, G. S. Y. (1971). "Yielding Behavior of Glassy Amorphous Polymers." Journal of Applied Physics 42(12): 4622-4630. <http://hdl.handle.net/2027.42/71330>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71330
dc.description.abstractThe effect of thermal history on yielding behavior of atactic polystyrene, isotactic polystyrene, polycarbonate, and polymethyl methacrylate was examined by correlating the deformed microstructure with measured density changes and compressive stress‐strain studies. Electron micrographs of bulk polymers and thin films demonstrate the tendency for well‐annealed materials to undergo localized shear deformation at 100–1000‐Å interspacings, and density measurements show an over‐all density increase of about 0.15% upon plastic deformation. Rapid cooling from the melt decreases both the material density (about−0.04%) and the tendency for plastic strain to localize into narrow bands. Compressive stress‐strain studies in which the strain rate, test temperature, and thermal history were systematically varied show a semilogarithmic relationship between nominal strain rate and yield stress. These data were analyzed according to an Eyring‐type exponential model where the ``shear activation volume'' and the ``activation energy'' were calculated and compared for the ranges of variables studied.en_US
dc.format.extent3102 bytes
dc.format.extent1918412 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleYielding Behavior of Glassy Amorphous Polymersen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemical and Metallurgical Engineering and The Macromolecular Research Center The University of Michigan, Ann Arbor, Michigan 48103en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71330/2/JAPIAU-42-12-4622-1.pdf
dc.identifier.doi10.1063/1.1659831en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceG. S. Y. Yeh, J. Macromol. Sci. (to be published).en_US
dc.identifier.citedreferenceG. S. Y. Yeh and P. H. Geil, J. Macromol. Sci. (Phys.) 1, 235 (1967).en_US
dc.identifier.citedreferenceS. H. Carr, P. H. Geil, and E. Baer, J. Macromol. Sci. (Phys.) 2, 13 (1968).en_US
dc.identifier.citedreferenceT. G. F. Schoon and O. Teichmann, Kolloid‐Z 197, 35 (1964).en_US
dc.identifier.citedreferenceK. H. Yang and J. L. Kardos, American Physical Society, Division of High Polymer Physics Meeting, Cleveland, Ohio, 1971 (unpublished).en_US
dc.identifier.citedreferenceD. Luch and G. S. Y. Yeh, American Physical Society, Division of High Polymer Physics Meeting, Cleveland, Ohio, 1971 (unpublished).en_US
dc.identifier.citedreferenceP. Zitek and J. Zelinger, J. Appl. Polymer Sci. 44, 1213 (1970).en_US
dc.identifier.citedreferenceC. Bauwens‐Crowet, J. C. Bauwens, and G. Homes, J. Polymer Sci. 7, 735 (1969).en_US
dc.identifier.citedreferenceC. Crowet and G. A. Homes, Appl. Mater. Res. 3, 1 (1964).en_US
dc.identifier.citedreferenceJ. J. Lohr, Trans. Soc. Rheol. 9, 65 (1965).en_US
dc.identifier.citedreferenceJ. A. Roetling, Polymer 6, 311 (1965).en_US
dc.identifier.citedreferenceD. H. Holt, J. Appl. Polymer Sci. 12, 1653 (1968).en_US
dc.identifier.citedreferenceR. N. Hayward, B. M. Murphy, and E. F. T. White, J. Polymer Sci. Part A‐2 9, 801 (1971).en_US
dc.identifier.citedreferenceP. B. Bowden and S. Raha, Phil. Mag. 22, 463 (1970).en_US
dc.identifier.citedreferenceP. B. Bowden, Phil. Mag. 22, 455 (1970).en_US
dc.identifier.citedreferenceASTM Standards, No. 27, test D 1505 (American Society for Testing and Materials, Philadelphia, Pa., 1967).en_US
dc.identifier.citedreferenceR. P. Kambour and A. S. Holik, J. Polymer Sci. Part A‐2 7, 1393 (1969).en_US
dc.identifier.citedreferenceD. H. Ender, Polymer Preprints, ACS (New York) 10, 1132 (1969).en_US
dc.identifier.citedreferenceH. Eyring, J. Chem. Phys. 3, 107 (1935).en_US
dc.identifier.citedreferenceH. Eyring, J. Chem. Phys. 4, 283 (1936).en_US
dc.identifier.citedreferenceW. Whitney, Sc.D. thesis (MIT, 1964) (unpublished).en_US
dc.identifier.citedreferenceE. J. Kramer, J. Appl. Polymer Sci. 14, 2825 (1970).en_US
dc.identifier.citedreferenceJ. S. Lazurkin, J. Polymer Sci. 30, 595 (1958).en_US
dc.identifier.citedreferenceR. E. Robertson, J. Appl. Polymer Sci. 7, 443 (1963).en_US
dc.identifier.citedreferenceJ. C. Bauwens, J. Polymer Sci. Part A‐2 8, 893 (1970).en_US
dc.identifier.citedreferenceJ. C. Jaeger, Elasticity, Plasticity, and Flow (Wiley, New York, 1962).en_US
dc.identifier.citedreferenceS. S. Sternstein, L. Ongchin, and A. Silverman, Appl. Polymer Symp. 7, 175 (1968).en_US
dc.identifier.citedreferenceR. F. Boyer, Rubber Rev. 36, 1303 (1963).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.