Show simple item record

Head‐on collision of drops—A numerical investigation

dc.contributor.authorNobari, M. R. H.en_US
dc.contributor.authorJan, Y. -J.en_US
dc.contributor.authorTryggvason, G.en_US
dc.date.accessioned2010-05-06T23:34:57Z
dc.date.available2010-05-06T23:34:57Z
dc.date.issued1996-01en_US
dc.identifier.citationNobari, M. R.; Jan, Y.‐J.; Tryggvason, G. (1996). "Head‐on collision of drops—A numerical investigation." Physics of Fluids 8(1): 29-42. <http://hdl.handle.net/2027.42/71337>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71337
dc.description.abstractThe head‐on collision of equal sized drops is studied by full numerical simulations. The Navier–Stokes equations are solved for the fluid motion both inside and outside the drops using a front tracking/finite difference technique. The drops are accelerated toward each other by a body force that is turned off before the drops collide. When the drops collide, the fluid between them is pushed outward leaving a thin layer bounded by the drop surface. This layer gets progressively thinner as the drops continue to deform, and in several of our calculations we artificially remove this double layer at prescribed times, thus modeling rupture. If no rupture takes place, the drops always rebound, but if the film is ruptured the drops may coalesce permanently or coalesce temporarily and then split again. Although the numerically predicted boundaries between permanent and temporary coalescence are found to be consistent with experimental observations, the exact location of these boundaries in parameter space is found to depend on the time of rupture. © 1996 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent366707 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleHead‐on collision of drops—A numerical investigationen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumThe University of Michigan, Department of Mechanical Engineering, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumThe University of Michigan, Department of Mechanical Engineering, Ann Arbor, Michigan 48109‐2121en_US
dc.contributor.affiliationotherInstitute for Computational Mechanics in Propulsion, Lewis Research Center, Cleveland, Ohio 44135en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71337/2/PHFLE6-8-1-29-1.pdf
dc.identifier.doi10.1063/1.868812en_US
dc.identifier.sourcePhysics of Fluidsen_US
dc.identifier.citedreferenceS. G. Bradley and C. D. Stow, “Collision between liquid drops,” Philos. Trans. R. Soc. London Ser. A 287, 635 (1978).en_US
dc.identifier.citedreferenceJ. D. Spengler and N. R. Gokhale, “Drop impactions,” J. Appl. Meteorol. 12, 316 (1973).en_US
dc.identifier.citedreferenceJ. Y. Park and L. M. Blair, “The effect of coalescence on drop size distribution in an agitated liquid-liquid dispersion,” Chem. Eng. Sci. 30, 1057 (1975).en_US
dc.identifier.citedreferenceD. J. Ryley and B. N. Bennett-Cowell, “The collision behaviour of steamborne water drops,” Int. J. Mech. Sci. 9, 817 (1967).en_US
dc.identifier.citedreferenceN. Ashgriz and P. Givi, “Binary collision dynamics of fuel droplets,” Int. J. Heat Fluid Flow 8, 205 (1987).en_US
dc.identifier.citedreferenceN. Ashgriz and J. Y. Poo, “Coalescence and separation in binary collisions of liquid drops,” J. Fluid Mech. 221, 183 (1990).en_US
dc.identifier.citedreferenceY. J. Jiang, A. Umemura, and C. K. Law, “An experimental investigation on the collision behaviour of hydrocarbon droplets,” J. Fluid Mech. 234, 171 (1992).en_US
dc.identifier.citedreferenceJ. Qian and C. K. Law, “Effects of ambient gas pressure on droplet collision,” AIAA Paper No. AIAA-94–0681, 1994.en_US
dc.identifier.citedreferenceA. M. Podvysotsky and A. A. Shraiber, “Coalescence and breakup of drops in two phase flows,” Int. J. Multiphase Flow 10, 195 (1984).en_US
dc.identifier.citedreferenceH. Lamb, Hydrodynamics (Dover, New York, 1932), p. 738.en_US
dc.identifier.citedreferenceJ. A. Tsamopoulos and R. A. Brown, “Nonlinear oscillations of inviscid drops and bubbles,” J. Fluid Mech. 127, 519 (1983).en_US
dc.identifier.citedreferenceT. W. Patzek, R. E. Benner, O. A. Basaran, and L. E. Scriven, “Nonlinear oscillations of inviscid free drops,” J. Comput. Phys. 97, 489 (1991).en_US
dc.identifier.citedreferenceW. Reid, “The oscillation of a viscous drop,” Q. Appl. Math. 18, 86 (1960).en_US
dc.identifier.citedreferenceC. A. Miller and L. E. Scriven, “The oscillation of a fluid droplet immersed in another fluid,” J. Fluid Mech. 32, 417 (1968).en_US
dc.identifier.citedreferenceG. B. Foote, “A numerical method for studying liquid drop behavior; Simple oscillations,” J. Comput. Phys. 11, 507 (1973).en_US
dc.identifier.citedreferenceT. S. Lundgren and N. N. Mansour, “Oscillations of drops in zero gravity with weak viscous effects,” J. Fluid Mech. 194, 479 (1988).en_US
dc.identifier.citedreferenceP. R. Brazier-Smith, S. G. Jennings, and J. Latham, “The interaction of falling water drops: Coalescence,” Proc. R. Soc. London Ser. A 326, 393 (1972).en_US
dc.identifier.citedreferenceF. H. Harlow and J. P. Shannon, “The splash of a liquid drop,” J. Appl. Phys. 38, 3855 (1967).en_US
dc.identifier.citedreferenceG. B. Foote, “The water drop rebound problem: Dynamics of collision,” J. Atmos. Sci. 32, 390 (1975).en_US
dc.identifier.citedreferenceG. Trapaga and J. Szekely, “Mathematical modelling of the isothermal impingement of liquid droplets in spraying processes,” Metall. Trans. B 22, 901 (1991).en_US
dc.identifier.citedreferenceK. Tsurutani, M. Yao, J. Senda, and H. Fujimoto, “Numerical analysis of the deformation process of a droplet impinging upon a wall,” JSME Int. J. Ser. II 33, 555 (1990).en_US
dc.identifier.citedreferenceC. S. Marchi, H. Liu, E. J. Lavernia, R. H. Rangel, A. Sickinger, and E. Muehlberger, “Numerical analysis of the deformation and solidification of a single droplet impinging onto a flat substrate,” J. Mat. Sci. 28, 3313 (1993).en_US
dc.identifier.citedreferenceJ. Fukai, Z. Zhao, D. Poulikakos, C. M. Megaridis, and O. Miyatake, “Modeling of the deformation of a liquid droplet impinging upon a flat surface,” Phys. Fluids A 5, 2589 (1993).en_US
dc.identifier.citedreferenceJ. Fukai, Y. Shiiba, T. Yamamoto, O. Miyatake, D. Poulikakos, C. M. Megaridis, and Z. Zhao, “Wetting effects on the spreading of a liquid droplet colliding with a flat surface: Experiments and modeling,” Phys. Fluids A 7, 236 (1995).en_US
dc.identifier.citedreferenceM. Rein, “Phenomena of liquid drop impact on solid and liquid surfaces,” Fluid Dyn. Res. 12, 61 (1993).en_US
dc.identifier.citedreferenceM. R. Nobari, “Numerical simulations of oscillations, collision, and coalescence of drops,” Ph.D. thesis, The University of Michigan, 1993.en_US
dc.identifier.citedreferenceM. R. Nobari and G. Tryggvason, “Numerical simulation of threedimensional droplet collision,” submitted for publication.en_US
dc.identifier.citedreferenceB. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski, and G. Zanetti, “Modelling merging and fragmentation in multiphase flows with SURFER,” J. Comput. Phys. 113, 134 (1994).en_US
dc.identifier.citedreferenceM. R. Nobari and G. Tryggvason, “Head-on collision of drops,” Bull. Am. Phys. Soc. 37, 1972 (1992) (abstract only).en_US
dc.identifier.citedreferenceS. O. Unverdi, “Numerical simulations of multi-fluid flows,” Ph.D. thesis, The University of Michigan, 1990.en_US
dc.identifier.citedreferenceS. O. Unverdi and G. Tryggvason, “A front tracking method for viscous incompressible flows,” J. Comput. Phys. 100, 25 (1992).en_US
dc.identifier.citedreferenceS. O. Unverdi and G. Tryggvason, “Multifluid flows,” Physica D 60, 70 (1992).en_US
dc.identifier.citedreferenceY.-J. Jan and G. Tryggvason, “The rise of contaminated bubbles,” submitted for publication.en_US
dc.identifier.citedreferenceC. S. Peskin, “Numerical analysis of blood flow in the heart,” J. Comput. Phys. 25, 220 (1977).en_US
dc.identifier.citedreferenceJ. Adams, “MUDPACK: Multigrid Fortran software for the efficient solution of linear elliptic partial differential equations,” Appl. Math. Comput. 34, 113 (1989).en_US
dc.identifier.citedreferenceG. Ryskin and L. G. Leal, “Numerical solution of free-boundary problems in fluid mechanics. Part 2. Buoyancy-driven motion of a gas bubble through a quiescent liquid,” J. Fluid Mech. 148, 19 (1984).en_US
dc.identifier.citedreferenceY.-J. Jan, “Computational studies of bubble dynamics,” Ph.D. thesis, The University of Michigan, 1993.en_US
dc.identifier.citedreferenceR. Davis, J. Schonberg, and J. Rallison, “The lubrication force between two viscous drops,” Phys. Fluids A 1, 77 (1989).en_US
dc.identifier.citedreferenceS. Yiantsios and R. Davis, “Close approach and deformation of two viscous drops due to gravity and van der Waals forces,” J. Colloid. Interface Sci. 144, 412 (1991).en_US
dc.identifier.citedreferenceD. Jacqmin and M. R. Foster, “The evolution of thin films generated by the collision of highly deforming droplets,” submitted for publication.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.