Show simple item record

The microwave spectrum, ab initio analysis, and structure of the fluorobenzene–hydrogen chloride complex

dc.contributor.authorSanz, M. Eugeniaen_US
dc.contributor.authorAntolínez, Soniaen_US
dc.contributor.authorAlonso, José L.en_US
dc.contributor.authorLópez, Juan C.en_US
dc.contributor.authorKuczkowski, Robert L.en_US
dc.contributor.authorPeebles, Sean A.en_US
dc.contributor.authorPeebles, Rebecca A.en_US
dc.contributor.authorBoman, Faith C.en_US
dc.contributor.authorKraka, Elfien_US
dc.contributor.authorCremer, Dieteren_US
dc.date.accessioned2010-05-06T23:35:25Z
dc.date.available2010-05-06T23:35:25Z
dc.date.issued2003-05-22en_US
dc.identifier.citationSanz, M. Eugenia; Antolínez, Sonia; Alonso, José L.; López, Juan C.; Kuczkowski, Robert L.; Peebles, Sean A.; Peebles, Rebecca A.; Boman, Faith C.; Kraka, Elfi; Cremer, Dieter (2003). "The microwave spectrum, ab initio analysis, and structure of the fluorobenzene–hydrogen chloride complex." The Journal of Chemical Physics 118(20): 9278-9290. <http://hdl.handle.net/2027.42/71342>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71342
dc.description.abstractThe fluorobenzene–hydrogen chloride π-hydrogen-bonded complex has been studied by high resolution microwave spectroscopy and ab initio calculations. Rotational spectra of the C6H5F–H35Cl,C6H5F–H35Cl, C6H5F–H37Cl,C6H5F–H37Cl, and C6D5F–H35ClC6D5F–H35Cl isotopomers were assigned using pulsed molecular beam techniques in a Fourier-transform microwave spectrometer. The spectra are consistent with a structure of the complex in which the HCl is above the fluorobenzene ring near the ring center, similar to the benzene–HCl prototype dimer. An analysis of the inertial data and the chlorine quadrupole coupling tensor results in two mathematically possible locations for the HCl subunit with respect to the fluorobenzene arising from sign ambiguities in interpreting the spectral constants. One structure has the HCl nearly perpendicular to the aromatic ring; the other has the HCl pointing toward the fluorine end of the ring. Spectral intensities for the μaμa and μbμb transitions favor the former configuration. Ab initio calculations (MP2/6-311++G(2df,2pd)+BSSE corrections) indicate that the position of the HCl is driven by electrostatic interactions with the π electrons of the benzene ring. HCl is shifted by 0.16 Å from the center of the ring toward the para-C atom, where the π density is significantly higher. In the equilibrium form, HCl is tilted by δ=14° from perpendicular to the ring with the hydrogen end toward the para-C atom. The H atom can perform an internal rotation or at least a half-circular libration (barriers smaller than 100 cm−1). An average δ value of 0.7° is estimated in reasonable agreement with the derived vibrationally averaged value of 3.8°. The complex binding energy ΔEΔE calculated at the CCSD(T)/6-311++G(2df,2pd)+CP(BSSE) level of theory is 2.8 kcal/mol, suggesting a lower ΔEΔE value for benzene–HCl than previously reported. Fluorobenzene–HCl possesses some charge transfer character; however, just 5.5 melectron are transferred from the benzene ring to HCl. In view of this, π–H bonding in fluorobenzene–HCl is predominantly electrostatic rather than covalent in character contrary to claims made in connection with benzene–HCl. © 2003 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent357390 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleThe microwave spectrum, ab initio analysis, and structure of the fluorobenzene–hydrogen chloride complexen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055en_US
dc.contributor.affiliationotherDepartamento de Química Física, Facultad de Ciencias, Universidad de Valladolid, 47005, Valladolid, Spainen_US
dc.contributor.affiliationotherDepartment of Theoretical Chemistry, Göteborg University, S-41320 Göteborg, Reutersgatan 2, Swedenen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71342/2/JCPSA6-118-20-9278-1.pdf
dc.identifier.doi10.1063/1.1567714en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceP. Tarakeshwar, S. J. Lee, J. Y. Lee, and K. S. Kim, J. Chem. Phys. JCPSA6108, 7217 (1998).en_US
dc.identifier.citedreferenceH. S. Gutowsky, E. Arunan, T. Emilsson, S. L. Tschopp, and C. E. Dykstra, J. Chem. Phys. JCPSA6103, 3917 (1995).en_US
dc.identifier.citedreferenceS. A. Cooke, G. K. Corlett, C. M. Evans, and A. C. Legon, Chem. Phys. Lett. CHPLBC272, 61 (1997).en_US
dc.identifier.citedreferenceW. G. Read, E. J. Campbell, G. Henderson, and W. H. Flygare, J. Am. Chem. Soc. JACSAT103, 7670 (1981); W. G. Read, E. J. Campbell, and G. Henderson, J. Chem. Phys. JCPSA678, 3501 (1983).en_US
dc.identifier.citedreferenceA. J. Gotch and T. S. Zwier, J. Chem. Phys. JCPSA693, 6977 (1990).en_US
dc.identifier.citedreferenceF. A. Baiocchi, J. H. Williams, and W. Klemperer, J. Phys. Chem. JPCHAX87, 2079 (1983).en_US
dc.identifier.citedreferenceE. A. Walters, J. R. Grover, M. G. White, and E. T. Hui, J. Phys. Chem. JPCHAX89, 3814 (1985).en_US
dc.identifier.citedreferenceY-H. Zhang, J-K. Hao, X. Wang, W. Zhou, and T-H. Tang, J. Mol. Struct.: THEOCHEM THEODJ455, 85 (1998).en_US
dc.identifier.citedreference(a) B. V. Cheney and M. W. Schulz, J. Phys. Chem. JPCHAX94, 6268 (1990); (b) B. V. Cheney, M. W. Schulz, J. Cheney, and W. G. Richards, J. Am. Chem. Soc. JACSAT110, 4195 (1988).en_US
dc.identifier.citedreferenceA. M. Sapse and D. C. Jain, J. Phys. Chem. JPCHAX88, 4970 (1984).en_US
dc.identifier.citedreferenceW. O. George, Rh. Lewis, G. Hussain, and G. J. Rees, J. Mol. Struct. JMOSB4189, 211 (1988).en_US
dc.identifier.citedreferenceM. P. Henry and A. N. Hambly, Aust. J. Chem. AJCHAS20, 1887 (1967).en_US
dc.identifier.citedreferenceD. M. Upadhyay, M. K. Shukla, and P. C. Mishra, J. Mol. Struct.: THEOCHEM THEODJ531, 249 (2000).en_US
dc.identifier.citedreferenceC. Petrongolo and J. Tomasi, Int. J. Quantum Chem., Quantum Biol. Symp. IJQBDZ2, 181 (1975).en_US
dc.identifier.citedreferenceR. A. Appleman, S. A. Peebles, and R. L. Kuczkowski, J. Mol. Struct. JMOSB4446, 55 (1998).en_US
dc.identifier.citedreferenceR. J. Wilson, S. A. Peebles, S. Antolínez, M. E. Sanz, and R. L. Kuczkowski, J. Phys. Chem. A JPCAFH102, 10630 (1998).en_US
dc.identifier.citedreferenceT. J. Balle and W. H. Flygare, Rev. Sci. Instrum. RSINAK52, 33 (1981).en_US
dc.identifier.citedreference(a) R. J. McMahon, R. J. Halter, R. L. Fimmen, R. J. Wilson, S. A. Peebles, R. L. Kuczkowski, and J. F. Stanton, J. Am. Chem. Soc. JACSAT122, 939 (2000); (b) J. L. Alonso, F. J. Lorenzo, J. L. López, A. Lesarri, S. Mata, and H. Dreizler, Chem. Phys. CMPHC2218, 267 (1997).en_US
dc.identifier.citedreference(a) W. Gordy and R. L. Cook, Microwave Molecular Spectra, 3rd ed. (Wiley-Interscience, New York, 1984); (b) H. M. Pickett, J. Mol. Spectrosc. JMOSA3148, 371 (1991).en_US
dc.identifier.citedreferenceSee EPAPS Document No. E-JCPSA6-118-003320for Tables S1, S2 (measured transitions) and Table S3 (coordinates). A direct link to this document may be found in the online article’s HTML reference section. The document may also be reached via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps/. See the EPAPS homepage for more information.en_US
dc.identifier.citedreference(a) S. Doraiswamy and S. D. Sharma, J. Mol. Struct. JMOSB4102, 81 (1983); (b) A. C. Legon and D. J. Millen, Proc. R. Soc. London, Ser. A PRLAAZ417, 21 (1988); (c) A. C. Legon, Faraday Discuss. ZZZZZZ97, 19 (1994); (d) R. H. Schwendeman, in Critical Evaluation of Chemical and Physical Structural Information, edited by D. R. Lide and M. A. Paul (National Academy of Sciences, Washington, DC, 1974).en_US
dc.identifier.citedreferenceF. H. de Leeuw and A. Dymanus, J. Mol. Spectrosc. JMOSA348, 427 (1973).en_US
dc.identifier.citedreference(a) C. Møller and M. S. Plesset, Phys. Rev. PHRVAO46, 618 (1934).(b) For a recent review, see D. Cremer, in Encyclopedia of Computational Chemistry, edited by P. V. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer, III, and P. R. Schreiner (Wiley, Chichester, UK, 1998), Vol. 3, p. 1706.en_US
dc.identifier.citedreferenceK. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett. CHPLBC157, 479 (1989).en_US
dc.identifier.citedreferenceM. A. Spackman, J. Phys. Chem. JPCHAX93, 7594 (1989). The 6-31G(+sd,+sp) basis was derived by Spackman by adding to Pople’s 6-31G basis (Ref. 27) diffuse polarization functions as well as a diffuse s-function. Spackman optimized the exponents of the d-type polarization functions for first- and second-row atoms as well as of the p-type polarization functions for hydrogen in the way that the mean polarizability of first- and second-row AHnAHn hydrides is maximized.en_US
dc.identifier.citedreferenceBasis 6-31G(d,p): P. C. Hariharan and J. A. Pople, Chem. Phys. Lett. CHPLBC16, 217 (1972).en_US
dc.identifier.citedreferenceBasis 6-311++G(2df,2pd): R. Krishnan, M. Frisch, and J. A. Pople, J. Chem. Phys. JCPSA672, 4244 (1980).en_US
dc.identifier.citedreferenceFor a review on the basis set superposition problem, see F. B. van Duijneveldt, J. G. C. M. van Duijneveldt-van de Rijdt, and J. H. van Lenthe, Chem. Rev. CHREAY94, 1873 (1994).en_US
dc.identifier.citedreferenceJ. J. Oh, I. Park, R. J. Wilson, S. A. Peebles, R. L. Kuczkowski, E. Kraka, and D. Cremer, J. Chem. Phys. JCPSA6113, 9051 (2000).en_US
dc.identifier.citedreference(a) E. Kraka, D. Cremer, U. Spoerel, I. Merke, W. Stahl, and H. Dreizler, J. Phys. Chem. JPCHAX99, 12466 (1995); (b) U. Spoerel, H. Dreizler, W. Stahl, E. Kraka, and D. Cremer, 100, 14298 (1996).en_US
dc.identifier.citedreferenceS. F. Boys and F. Bernardi, Mol. Phys. MOPHAM19, 553 (1970).en_US
dc.identifier.citedreference(a) J. E. Carpenter and F. Weinhold, J. Mol. Struct.: THEOCHEM THEODJ169, 41 (1988); (b) A. E. Reed, R. B. Weinstock, and F. Weinhold, J. Chem. Phys. JCPSA683, 735 (1985).(c) A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev. CHREAY88, 899 (1988).en_US
dc.identifier.citedreferenceE. Kraka, J. Gräfenstein, J. Gauss, F. Reichel, L. Olsson, Z. Konkoli, Z. He, Y. He, and D. Cremer, COLOGNE2000, Göteborg University, Göteborg, 2000.en_US
dc.identifier.citedreference(a) J. F. Stanton, J. Gauss, J. D. Watts, W. J. Lauderdale, and R. J. Bartlett, ACES II, Quantum Theory Project, University of Florida, 1992. (b) See also J. F. Stanton, J. Gauss, J. D. Watts, W. J. Lauderdale, and R. J. Bartlett, Int. J. Quantum Chem., Symp. ZZZZZZ26, 879 (1992).en_US
dc.identifier.citedreferenceP. Salvador, S. Simon, M. Duran, and J. J. Dannenberg, J. Chem. Phys. JCPSA6113, 5666 (2000).en_US
dc.identifier.citedreferenceP. Tarakeshwar, K. S. Kim, E. Kraka, and D. Cremer, J. Chem. Phys. JCPSA6115, 6018 (2001).en_US
dc.identifier.citedreferenceE. Kraka, D. Cremer, and R. L. Kuczkowski, (unpublished).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.