Show simple item record

Phonon dispersion and phonon densities of states for ZnS and ZnTe

dc.contributor.authorVagelatos, N.en_US
dc.contributor.authorWehe, David K.en_US
dc.contributor.authorKing, John Swintonen_US
dc.date.accessioned2010-05-06T23:35:49Z
dc.date.available2010-05-06T23:35:49Z
dc.date.issued1974-05-01en_US
dc.identifier.citationVagelatos, N.; Wehe, D.; King, J. S. (1974). "Phonon dispersion and phonon densities of states for ZnS and ZnTe." The Journal of Chemical Physics 60(9): 3613-3618. <http://hdl.handle.net/2027.42/71346>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71346
dc.description.abstractNeutron scattering data are reported for II–VI zincblende crystals, which are believed to be of sufficient precision to refine earlier ZnS ambiguities and to provide a basis for model fitting comparable to existing III‐V results. Valence shell models, including 9–12 parameters (VSM) and a variable shell charge extension (VCM), were fit to the data and used to generate phonon density of states and Debye temperatures. Very good fits to the neutron data were obtained, but no model was found that also predicts an accurate set of electric and mechanical constants. It is concluded that an unambiguous ionic charge Z cannot be assigned from the neutron results in either case.en_US
dc.format.extent3102 bytes
dc.format.extent348814 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titlePhonon dispersion and phonon densities of states for ZnS and ZnTeen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Nuclear Engineering, The University of Michigan, Ann Arbor, Michigan 48104en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71346/2/JCPSA6-60-9-3613-1.pdf
dc.identifier.doi10.1063/1.1681581en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceG. Dolling and J. L. Waugh, in Lattice Dynamics, edited by R. F. Wallis (Pergamon, Oxford, 1965), p. 19.en_US
dc.identifier.citedreferenceJ. L. Yarnell, J. L. Warren, R. G. Wenzel, and P. J. Dean, in Neutron Elastic Scattering (IAEA, Vienna, 1968).en_US
dc.identifier.citedreferenceD. L. Price, J. M. Rowe, and R. M. Nicklow, Phys. Rev. B 3, 1268 (1971).en_US
dc.identifier.citedreferenceN. Vagelatos, J. S. King, and L. A. Feldkamp, Bull. Am. Phys. Soc. 18, 313 (1973).en_US
dc.identifier.citedreferenceJ. Bergsma, Phys. Lett., A 32, 324 (1970); J. Bergsma, “Lattice Dynamics of Magnesium Stanide and Zinc Blende,” Reactor Centrum, Nederland Report No. RCN‐121, 1970.en_US
dc.identifier.citedreferenceL. A. Feldkamp, D. K. Steinman, N. Vagelatos, J. S. King, and G. Venkataraman, J. Phys. Chem. Solids 32, 1573 (1971).en_US
dc.identifier.citedreferenceA. D. B. Woods, W. Cochran, and B. N. Brockhouse, Phys. Rev. 19, 980 (1960).en_US
dc.identifier.citedreferenceL. A. Feldkamp, J. Phys. Chem. Solids 33, 711 (1972).en_US
dc.identifier.citedreferenceB. N. Brockhouse, S. Hautecler, and H. Stiller, edited by R. Strumane et al., Interaction of Radiation with Solids (North‐Holland, 1963).en_US
dc.identifier.citedreferenceN. Vagelatos, thesis, The University of Michigan, 1973.en_US
dc.identifier.citedreferenceJ. C. Irwin and L. LaCombe, J. Applied Phys. 41, 1444 (1971).en_US
dc.identifier.citedreferenceO. Brafman and S. S. Mitra, Phys. Rev. 171, 931 (1963).en_US
dc.identifier.citedreferenceS. S. Mitra, O. Brafman, W. B. Daniels, R. K. Crawford, Phys. Rev. 168, 942 (1939).en_US
dc.identifier.citedreferenceD. Berlincourt, H. Jaffe, L. R. Shiozawa, Phys. Rev. 129, 1009 (1963).en_US
dc.identifier.citedreferenceC. A. Coulson, L. B. Redei, D. Stocker, Proc. R. Soc., Lond. 270, 352 (1962).en_US
dc.identifier.citedreferenceJ. C. Phillips, Rev. Mod. Phys. 42, 317 (1970).en_US
dc.identifier.citedreferenceR. A. Cowley, Proc. R. Soc., A 268, 121 (1963).en_US
dc.identifier.citedreferenceG. Gilat and L. J. Raubenheimer, Phys. Rev. 44, 390 (1966).en_US
dc.identifier.citedreferenceD. L. Martin, Philos. Mag. 46, 751–758 (1955).en_US
dc.identifier.citedreferenceF. Kelemen, D. Niculescu, and E. Cruceanu, Phys. Status Solidi 11, 865–872 (1965).en_US
dc.identifier.citedreferenceP. V. Gul’yaev and A. V. Petrov, Sov. Phys.‐Solid State 1, 330–334 (1959).en_US
dc.identifier.citedreferenceK. Clusius and P. Harteck, Z. Phys. Chem. 134, 243 (1928).en_US
dc.identifier.citedreferenceJ. De Launay, J. Chem. Phys. 22, 1676 (1954).en_US
dc.identifier.citedreferenceA. F. Demidenko, et al., Izv. Akad. Nauk SSSR Neorg. Mater. 5 (1) 158–160 (1969).en_US
dc.identifier.citedreferenceJ. F. Vetelino, S. S. Mitra, and Namjoshi, Phys. Rev. B 2, 967 (1970).en_US
dc.identifier.citedreferenceG. Gilat and R. M. Nicklow, Phys. Rev. 143, 487 (1966).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.