Show simple item record

Model networks of end‐linked polydimethylsiloxane chains. I. Comparisons between experimental and theoretical values of the elastic modulus and the equilibrium degree of swelling

dc.contributor.authorMark, J. E.en_US
dc.contributor.authorSullivan, J. L.en_US
dc.date.accessioned2010-05-06T23:36:46Z
dc.date.available2010-05-06T23:36:46Z
dc.date.issued1977-02-01en_US
dc.identifier.citationMark, J. E.; Sullivan, J. L. (1977). "Model networks of end‐linked polydimethylsiloxane chains. I. Comparisons between experimental and theoretical values of the elastic modulus and the equilibrium degree of swelling." The Journal of Chemical Physics 66(3): 1006-1011. <http://hdl.handle.net/2027.42/71356>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71356
dc.description.abstractTwo samples of hydroxyl‐terminated polydimethylsiloxane having molecular weights the order of 2×104 and 1×103 g mol−1 were separated into a total of six fractions of relatively narrow molecular weight distribution. Portions of one of the unfractionated polymers and each of the fractions were cross‐linked by reacting the hydroxyl chain ends, in the undiluted state, with a tetrafunctional orthosilicate. The resulting networks of end‐linked chains were studied with regard to their stress–strain isotherms in elongation at 25°C and their equilibrium swelling in benzene at room temperature. Values of the elastic modulus obtained from the isotherms support theoretical arguments that fluctuations in the network chain vectors reduce the value of the modulus to approximately one‐half of the value predicted for affine deformations of chain vectors constrained in their fluctuations by cross‐links firmly embedded in the network medium. Values of the equilibrium degree of swelling of the networks calculated on this basis are also in good agreement with experiment. The networks formed by end‐linking relatively short chains have small values of the semiempirical constant 2C2 used as a measure of the departure of an observed stress–strain isotherm from the form predicted by theory. Although this observation is consistent with the suggestion that such end‐linked networks have a much smaller number of interchain entanglements than do randomly cross‐linked networks, other evidence and arguments unfortunately do not support this assumption.en_US
dc.format.extent3102 bytes
dc.format.extent475191 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleModel networks of end‐linked polydimethylsiloxane chains. I. Comparisons between experimental and theoretical values of the elastic modulus and the equilibrium degree of swellingen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry and the Macromolecular Research Center, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71356/2/JCPSA6-66-3-1006-1.pdf
dc.identifier.doi10.1063/1.434056en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceP. J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, N.Y., 1953).en_US
dc.identifier.citedreferenceL. R. G. Treloar, The Physics of Rubber Elasticity (Clarendon Press, Oxford, 1958).en_US
dc.identifier.citedreferenceK. Dusek and W. Prins, Adv. Polymer Sci. 6, 1 (1969).en_US
dc.identifier.citedreferenceW. W. Graessley, Adv. Polymer Sci. 16, 1 (1974).en_US
dc.identifier.citedreferenceC. A. Uraneck, H. L. Hsieh, and O. G. Buck, J. Polymer Sci. 46, 535 (1960).en_US
dc.identifier.citedreferenceG. Kraus and G. A. Moczvgemba, J. Polymer Sci. A 2, 277 (1964).en_US
dc.identifier.citedreferenceD. Froelich, D. Crawford, T. Rozek, and W. Prins, Macromolecules 5, 100 (1972).en_US
dc.identifier.citedreferenceG. Beinert, A. Belkebir‐Mrani, J. Herz, G. Hild, and P. Rempp, Faraday Disc. Chem. Soc. 57, 27 (1974).en_US
dc.identifier.citedreferenceD. J. Walsh, G. Allen, and G. Ballard, Polymer 15, 366 (1974).en_US
dc.identifier.citedreferenceG. Allen, P. A. Holmes, and D. J. Walsh, Faraday Disc. Chem. Soc. 57, 19 (1974); G. Allen, P. L. Egerton, and D. J. Walsh, Polymer 17, 65 (1976).en_US
dc.identifier.citedreferenceP. Rempp, in Reactions of Polymers, edited by J. A. Moore (Reidel, Boston, 1973); and pertinent references cited therein.en_US
dc.identifier.citedreferenceF. Rietsch and D. Froelich, Polymer 16, 873 (1975).en_US
dc.identifier.citedreferenceP. Rempp, J. Herz, G. Hild, and C. Picot, Pure Appl. Chem. 43, 77 (1975); and pertinent references cited therein.en_US
dc.identifier.citedreferenceJ. P. Munch, S. Candau, R. Duplessix, C. Picot, J. Herz, and H. Benoit, J. Polymer Sci. Polymer Phys. Ed. 14, 1097 (1976).en_US
dc.identifier.citedreferenceM. Morton, L. J. Fetters, J. Inomata, D. C. Rubio, and R. N. Young, Rubber Chem. Technol. 49, 303 (1976).en_US
dc.identifier.citedreferenceM. Morton and D. C. Rubio (in press); paper no. 43, Cleveland Meeting, Rubber Div., ACS, 1975.en_US
dc.identifier.citedreferenceH. M. James and E. Guth, J. Chem. Phys. 15, 669 (1947).en_US
dc.identifier.citedreferenceP. J. Flory, Trans. Faraday Soc. 57, 829 (1961).en_US
dc.identifier.citedreferenceB. E. Eichinger, Macromolecules 5, 496 (1972).en_US
dc.identifier.citedreferenceW. W. Graessley, Macromolecules 8, 186, 865 (1975).en_US
dc.identifier.citedreferenceR. T. Deam and S. F. Edwards, Phil. Trans. R. Soc. Lond. Ser. A 280, 317 (1976).en_US
dc.identifier.citedreferenceP. J. Flory, Disc. R. Soc. Lond. (in press).en_US
dc.identifier.citedreferenceP. J. Flory (in preparation).en_US
dc.identifier.citedreferenceM. Mooney, J. Appl. Phys. 19, 434 (1948); R. S. Rivlin, Phil. Trans. Roy. Soc. London, Ser. A 241, 379 (1948).en_US
dc.identifier.citedreferenceJ. E. Mark, Rubber Chem. Technol. 48, 495 (1975).en_US
dc.identifier.citedreferenceWe are indebted to John Saam of the Dow Corning Corporation for the two samples of hydroxyl‐terminated PDMS (designated E‐1586‐148A and 148B, respectively), for a great deal of helpful advice on end‐linking them and for several standard PDMS samples suitable for calibrating our gel permeation chromatography apparatus.en_US
dc.identifier.citedreferenceA. J. Barry, J. Appl. Phys. 17, 1020 (1946).en_US
dc.identifier.citedreferenceAnalyses for C2H5OC2H5O groups were carried out by the Schwartzkopf Microanalytical Lab., Woodside, N.Y.en_US
dc.identifier.citedreferenceJ. E. Mark, J. Phys. Chem. 68, 1092 (1964).en_US
dc.identifier.citedreferenceJ. E. Mark and P. J. Flory, J. Appl. Phys. 37, 4635 (1966).en_US
dc.identifier.citedreferenceJ. E. Mark, J. Am. Chem. Soc. 92, 7252 (1970).en_US
dc.identifier.citedreferenceA. Ciferri and P. J. Flory, J. Appl. Phys. 30, 1498 (1959).en_US
dc.identifier.citedreferenceP. J. Flory and Y. Tatara, J. Polymer Sci., Polymer Phys. Ed. 13, 683 (1975).en_US
dc.identifier.citedreferenceR. M. Johnson and J. E. Mark, Macromolecules 5, 41 (1972).en_US
dc.identifier.citedreferenceC. U. Yu and J. E. Mark, Polymer J. 7, 101 (1975).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.