Show simple item record

Effect of lipopolysaccharides on vascular endothelial growth factor expression in mouse pulp cells and macrophages

dc.contributor.authorBotero, Tatiana M.en_US
dc.contributor.authorMantellini, Maria G.en_US
dc.contributor.authorSong, Wenyingen_US
dc.contributor.authorHanks, Carl T.en_US
dc.contributor.authorNör, Jacques E.en_US
dc.date.accessioned2010-06-01T18:11:17Z
dc.date.available2010-06-01T18:11:17Z
dc.date.issued2003-06en_US
dc.identifier.citationBotero, Tatiana M.; Mantellini, Maria G.; Song, Wenying; Hanks, Carl T.; NÖr, Jacques E. (2003). "Effect of lipopolysaccharides on vascular endothelial growth factor expression in mouse pulp cells and macrophages." European Journal of Oral Sciences 111(3): 228-234. <http://hdl.handle.net/2027.42/71399>en_US
dc.identifier.issn0909-8836en_US
dc.identifier.issn1600-0722en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71399
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=12786954&dopt=citationen_US
dc.format.extent418599 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherMunksgaard International Publishersen_US
dc.publisherBlackwell Publishing Ltden_US
dc.rights2003 Eur J Oral Scien_US
dc.subject.otherVascular Endothelial Growth Factor (VEGF)en_US
dc.subject.otherNeovascularizationen_US
dc.subject.otherAngiogenesisen_US
dc.subject.otherDental Pulpen_US
dc.subject.otherLipopolysaccharide (LPS)en_US
dc.titleEffect of lipopolysaccharides on vascular endothelial growth factor expression in mouse pulp cells and macrophagesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelDentistryen_US
dc.subject.hlbsecondlevelOtolaryngologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Oral Medicine, Pathology and Oncology, University of Michigan School of Dentistry; Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationotherDepartment of Cariology, Restorative Sciences, and Endodontics, anden_US
dc.identifier.pmid12786954en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71399/1/j.1600-0722.2003.00041.x.pdf
dc.identifier.doi10.1034/j.1600-0722.2003.00041.xen_US
dc.identifier.sourceEuropean Journal of Oral Sciencesen_US
dc.identifier.citedreferencePashley DH. Dynamics of the pulpo-dentin complex. Crit Rev Oral Biol Med 1996; 7: 104 – 133.en_US
dc.identifier.citedreferenceTakahashi K. Pulpal vascular changes in inflammation. Proc Finn Dent Soc 1992; 88: 381 – 385.en_US
dc.identifier.citedreferenceKim S, Lui M, Simchon S, Dorscher-kim JE. Effects of selected inflammatory mediators on blood flow and vascular permeability in the dental pulp. Proc Finn Dent Soc 1992; 88: 387 – 392.en_US
dc.identifier.citedreferenceHeyeraas J, Kvinnsland I. Tissue pressure and blood flow in pulpal inflammation. Proc Finn Dent Soc 1992; 88: 393 – 401.en_US
dc.identifier.citedreferenceSeltzer S, Farber PA. Microbiologic factors in endodontology. Oral Surg Oral Med Oral Pathol 1994; 78: 634 – 645.en_US
dc.identifier.citedreferenceLoesche WJ, Syed SA. The predominant cultivable flora of carious plaque and carious dentine. Caries Res 1973; 7: 201 – 216.en_US
dc.identifier.citedreferenceRØlla G, Oppermann RV, Bowen WH, Ciardi JE, Knox KW. High amounts of lipoteichoic acid in sucrose-induced plaque in vivo. Caries Res 1980; 14: 235 – 238.en_US
dc.identifier.citedreferenceGinsburg I. Role of lipoteichoic acid in infection and inflammation. Lancet Infect Dis 2002; 2: 171 – 179.en_US
dc.identifier.citedreferenceHoshino E. Predominant obligate anaerobes in human carious dentin. J Dent Res 1985; 64: 1195 – 1198.en_US
dc.identifier.citedreferenceMassey WLK, Romberg DM, Hunter N, Hume WR. The association of carious dentin microflora with tissue changes in human pulpitis. Oral Microbiol Immun 1993; 8: 30 – 35.en_US
dc.identifier.citedreferenceLove RM, Jenkinson HF. Invasion of dentinal tubules by oral bacteria. Crit Rev Oral Biol Med 2002; 13: 171 – 183.en_US
dc.identifier.citedreferenceHahn CL, Falkler WA, Minah GE. Microbiological studies of carious dentine from human teeth with irreversible pulpitis. Arch Oral Biol 1991; 36: 147 – 153.en_US
dc.identifier.citedreferenceHosoya S, Matsushima K. Stimulation of interleukin-1β production of human dental pulp cells by Porphyromonas endodontalis lipopolysaccharides. J Endodont 1997; 23: 39 – 42.en_US
dc.identifier.citedreferenceTokuda M, Sakuta T, Fushuku A, Torii M, Nagaoka S. Regulation of interleukin-6 expression in human dental pulp cell cultures stimulated with Prevotella intermedia lipopolysaccharide. J Endodont 2001; 27: 273 – 277.en_US
dc.identifier.citedreferenceNagaoka S, Tokuda M, Sakuta T, Taketoshi Y, Tamura M, Takada H, Kawagoe M. Interleukin-8 gene expression by human dental pulp fibroblast in cultures stimulated with Prevotella intermedia lipopolysaccharide. J Endodont 1996; 22: 9 – 12.en_US
dc.identifier.citedreferenceRietschel ET, Kirikae T, Schade FU, Ulmer AJ, Halst O, Brade H, Schmidt G, Mamat U, Grinmecke HD, Kusumoto S. The chemical structure of bacterial endotoxin in relation to bioactivity. Immunobiology 1993; 187: 169 – 190.en_US
dc.identifier.citedreferenceNester EN, Anderson DG, Roberts CE, Pearsall NN, Nester MT. Microbiology: a human perspective, 3rd edn. New York: McGraw-Hill, 2001; 61 – 66.en_US
dc.identifier.citedreferenceGuha M, Mackman N. LPS induction of gene expression in human monocytes. Cell Signaling 2001; 13: 85 – 94.en_US
dc.identifier.citedreferenceTakeuchi O, Akira S. Toll-like receptors; their physiological role and signal transduction system. Int Immunopharmacol 2001; 14: 625 – 635.en_US
dc.identifier.citedreferenceDziarski R, Gupta D. Role of MD-2 in TLR2- and TRL4-mediated recognition of Gram-negative and Gram-positive bacteria and activation of chemokine genes. J Endotoxin Res 2000; 6: 401 – 405.en_US
dc.identifier.citedreferenceHorng T, Barton GM, Medzhitov R. Tirap. an adapter molecule in the toll-signaling pathway. Nat Immunol 2001; 2: 835 – 841.en_US
dc.identifier.citedreferenceFerrara N. Vascular endothelial growth factor. Eur J Cancer 1996; 32A: 2413 – 2422.en_US
dc.identifier.citedreferencePolverini PJ. The pathophysiology of angiogenesis. Crit Rev Oral Biol Med 1995; 6: 230 – 247.en_US
dc.identifier.citedreferenceNÖr JE, Christensen J, Mooney DJ, Polverini PJ. Vascular endothelial growth factor (VEGF)-mediated angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl-2 expression. Am J Pathol 1999; 154: 375 – 384.en_US
dc.identifier.citedreferenceDvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 1995; 146: 1029 – 1039.en_US
dc.identifier.citedreferenceRoberts-Clark DJ, Smith AJ. Angiogenic growth factors in human dentine matrix. Arch Oral Biol 2000; 45: 1013 – 1016.en_US
dc.identifier.citedreferenceMatsushita K, Motani R, Sakuta T, Nagaoka S, Matsuyama T, Abeyama K, Maruyama H, Takada H, Torii M. Lipopolysaccharide enhances the production of vascular endothelial growth factor by human pulp cells in culture. Infect Immun 1999; 67: 1633 – 1639.en_US
dc.identifier.citedreferenceArtese L, Rubini C, Ferrero G, Fioroni M, Santinelli A, Piattelli A. Vascular endothelial growth factor (VEGF) expression in healthy and inflamed human dental pulps. J Endodont 2002; 28: 20 – 23.en_US
dc.identifier.citedreferenceHanks CT, Sun ZL, Fang DN, Edwards CA, Wataha JC, Ritchie HH, Butler WT. Cloned 3T6 cell line from CD-1 mouse fetal molar dental papillae. Connect Tissue Res 1998; 37: 233 – 249.en_US
dc.identifier.citedreferenceFreshney R. Culture of animal cells: a manual of basic techniques, 3rd edn. Hoboken: Wiley Higher Education, 1993.en_US
dc.identifier.citedreferenceShima TD, Kuroki M, Deutsch U, Ng Y-S, Adamis AP, d'Amores PA. The mouse gene for vascular endothelial growth factor. J Biol Chem 1996; 271: 3877 – 3883.en_US
dc.identifier.citedreferenceHovey RC, Goldhar AS, Baffi J, Vonkerhaar BK. Transcriptional regulation of vascular endothelial growth factor expression in epithelial and stromal cells during mouse mammary gland development. Mol Endocrinol 2001; 15: 819 – 883.en_US
dc.identifier.citedreferenceHanks CT, Fang D, Sun Z, Edwards CA, Butler WT. Dentin-specific proteins in MDPC-23 cell line. Eur J Oral Sci 1998; 106: 260 – 266.en_US
dc.identifier.citedreferencePolverini PJ. Role of the macrophage in angiogenesis-dependent diseases. In: Golberg ID, Rosen EM, eds. Regulation of angiogenesis. Basel: BirkhÄuser-Verlag 1997, 11 – 28.en_US
dc.identifier.citedreferenceYoshida S, Ohshima H. Distribution and organization of peripheral capillaries in dental pulp and their relationship to odontoblasts. Anat Rec 1996; 245: 313 – 326.en_US
dc.identifier.citedreferenceTabata S, Wada K, Semba T. Fate of odontoblasts and blood capillaries in the incisal region of the rat incisor pulp. Anat Rec 1993; 235: 12 – 20.en_US
dc.identifier.citedreferenceOkiji T, Morita I, Sunada I, Murota S. Involvement of arachidonic acid metabolites in increase in vascular permeability in experimental dental pulpal inflammation in the rat. Arch Oral Biol 1989; 34: 523 – 528.en_US
dc.identifier.citedreferenceItaya H, Imaizumi T, Yoshida H, Koyoma M, Suzuki S, Satoh K. Expression of vascular endothelial growth factor in human monocyte/macrophages stimulated with lipopolysaccharides. Thromb Haemost 2001; 85: 171 – 176.en_US
dc.identifier.citedreferenceSakuta T, Matsushita K, Yamaguchi N, Oyama T, Motani R, Koga T, Nagaoka S, Abeyama K, Maruyama I, Takada H, Torii M. Enhanced production of vascular endothelial growth factor by human monocytic cells stimulated with endotoxin through transcription factor SP-1. J Med Microbiol 2001; 50: 233 – 237.en_US
dc.identifier.citedreferenceXiong M, Elson G, Legarda D, Leibovich SJ. Production of vascular endothelial growth factor by murine macrophages. Am J Pathol 1998; 153: 587 – 598.en_US
dc.identifier.citedreferenceRoss HM, Romrell LJ, Kaye GI. Histology: a text and atlas, 3rd edn. Baltimore: Williams & Wilkins 1995; 107 – 110.en_US
dc.identifier.citedreferenceBae KS, Baumgartner JC, Shearer TR, David LL. Occurrence of Prevotella nigrescens and Prevotella intermedia in infections of endodontic origin. J Endodont 1997; 23: 620 – 623.en_US
dc.identifier.citedreferenceSundqvist G. Taxonomy, ecology and pathogenicity of the root canal flora. Oral Surg Oral Med Oral Pathol 1994; 78: 522 – 530.en_US
dc.identifier.citedreferenceNakane A, Yoshida T, Nakata K, Horiba N, Nakamura H. Effects of lipopolysaccharides on human dental pulp cells. J Endodont 1995; 21: 128 – 130.en_US
dc.identifier.citedreferenceHoriba N, Maekawa Y, Matsumoto T, Nakamura H. A study of the distribution of endotoxin in the dentinal wall of infected root canals. J Endodont 1990; 16: 331 – 334.en_US
dc.identifier.citedreferenceDarveau RP. Lipid A diversity and the innate host response to bacterial infection. Curr Opin Microbiol 1998; 1: 36 – 42.en_US
dc.identifier.citedreferenceLevy AP, Levy NS, Goldberg MA. Post-transcriptional regulation of vascular endothelial growth factor by hypoxia. J Biol Chem 1996; 271: 2746 – 2753.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.