Show simple item record

Effects of steady electric fields on human retinal pigment epithelial cell orientation and migration in culture

dc.contributor.authorSulik, Gregory L.en_US
dc.contributor.authorSoong, H. Kazen_US
dc.contributor.authorChang, Patricia C. T.en_US
dc.contributor.authorParkinson, William Charlesen_US
dc.contributor.authorElner, Susan G.en_US
dc.contributor.authorElner, Victor M.en_US
dc.date.accessioned2010-06-01T18:11:39Z
dc.date.available2010-06-01T18:11:39Z
dc.date.issued1992-02en_US
dc.identifier.citationSulik, Gregory L.; Soong, H. Kaz; Chang, Patricia C. T.; Parkinson, William C.; Elner, Susan G.; Elner, Victor M. (1992). "Effects of steady electric fields on human retinal pigment epithelial cell orientation and migration in culture." Acta Ophthalmologica 70(1): 115-122. <http://hdl.handle.net/2027.42/71405>en_US
dc.identifier.issn1755-375Xen_US
dc.identifier.issn1755-3768en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71405
dc.description.abstractLow-level, steady electric fields of 6–10 volts/cm stimulated directional orientation and translocation of cultured human retinal pigment epithelial cells. The orientative movements (galvanotropism) consisted of somatic elongation of the cells into spindle shapes, followed by pivotal alignment orthogonal to the field. The anodal edges of the cells underwent retraction of their plasmalemmal extensions, while the cathode edges and the longitudinal ends developed lamellipodia and ruffled membranes. These tropic movements were followed by a translocational movement (galvanotaxis) of the cells towards the cathode. Staining of these migrating cells for actin showed the accumulation of stress fibers at the leading (cathodal) edge, as well as at the longitudinal ends of the elongated somata. These results suggest that endogenous, biologically-generated electric fields (eg., injury currents) may play a role in the guidance and migration of retinal pigment epithelial cells after retinal injury.en_US
dc.format.extent768382 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1992 Institution Acta Ophthalmologica Scandinavicaen_US
dc.subject.otherCell Migrationen_US
dc.subject.otherElectric Fielden_US
dc.subject.otherRetinal Pigment Epitheliumen_US
dc.subject.otherGalvanotaxisen_US
dc.subject.otherGalvanotropismen_US
dc.titleEffects of steady electric fields on human retinal pigment epithelial cell orientation and migration in cultureen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelOphthalmologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartments of Ophthalmology, The University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationumPhysics, The University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationumPathology, The University of Michigan, Ann Arbor, Michiganen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71405/1/j.1755-3768.1992.tb02102.x.pdf
dc.identifier.doi10.1111/j.1755-3768.1992.tb02102.xen_US
dc.identifier.sourceActa Ophthalmologicaen_US
dc.identifier.citedreferenceAnderson JD ( 1951 ): Galvanotaxis of slime mold. J Gen Physiol 35: 1 – 16.en_US
dc.identifier.citedreferenceChang PCT, Sulik GL, Soong HK, Parkinson WC, Qu X & Meyer RF ( 1991 ): Galvanotropic and galvanotaxic responses of corneal endothelial cells are inhibited by cytochalasin D and W-7. Invest Ophthalmol Vis Sci (suppl) 32: 1219.en_US
dc.identifier.citedreferenceCooper MS & Schliwa M ( 1986 ): Motility of cultured fish epidermal cells in the presence and absence of direct current electric fields. J Cell Biol 102: 1384 – 1399.en_US
dc.identifier.citedreferenceDineur E ( 1891 ): Note sur la sensibilite des leucocytes a l'electricite. Bull Seances Soc Belge Microscopie (Bruxelles) 18: 113 – 118.en_US
dc.identifier.citedreferenceElner SG, Strieter RM, Elner VM, Rollins BJ, Del Monte MA & Kunkel SL ( 1991 ): Monocyte chemotactic protein gene expression by cytokine-treated human retinal pigment epithelial cells. Lab Invest 64: 819 – 825.en_US
dc.identifier.citedreferenceErickson CA & Nuccitelli R ( 1984 ): Embryonic fibroblast motility and orientation can be influenced by physiological electric fields. J Cell Biol 98: 296 – 307.en_US
dc.identifier.citedreferenceFerrier J, Ross SM, Kanehisa J & Aubin JE ( 1986 ): Osteoclasts and osteoblasts migrate in opposite directions in response to a constant electric field. J Cell Physiol 129: 283 – 288.en_US
dc.identifier.citedreferenceGoldman RD, Schloss JA & Starger JM ( 1976 ): Organizational changes of actin-like microfilaments during animal cell movement. In: Goldman RD, Pollard T & Rosenbaum J ( eds ). Cell Motility, p 217. Cold Spring Harb Press, Cold Spring Harbor ( ME ).en_US
dc.identifier.citedreferenceHenderson D & Weber K ( 1979 ): Three-dimensional organization of microfilaments and microtubules in the cytoskeleton. Exp Cell Res 124: 301 – 309.en_US
dc.identifier.citedreferenceHinkle L, McCaig CD & Robinson KR ( 1981 ): The direction of growth of differentiating neurones and myoblasts from frog embryos in an applied electric field. J Physiol (London) 314: 121 – 135.en_US
dc.identifier.citedreferenceJaffe LD & Nuccitelli R ( 1974 ): An ultrasensitive vibrating electrode for measuring steady extracellular currents. J Cell Biol 63: 614 – 628.en_US
dc.identifier.citedreferenceJaffe LF & Stern CD ( 1979a ): Neurites grow faster towards the cathode than the anode in a steady field. J Exp Zool 209: 115 – 128.en_US
dc.identifier.citedreferenceJaffe LF & Stern CD ( 1979b ): Strong electrical currents leave the primitive streak of chick embryos. Science 206: 569 – 571.en_US
dc.identifier.citedreferenceLazarides E & Weber K ( 1974 ): Actin antibody: The specific visualization of actin filaments in non-muscle cells. Proc Natl Acad Sci USA 71: 2268 – 2272.en_US
dc.identifier.citedreferenceLuther PW, Peng HB & Lin JJ ( 1983 ): Changes in cell shape and actin distribution induced by constant electric fields. Nature (London) 303: 61 – 64.en_US
dc.identifier.citedreferenceMcCaig CD & Robinson KR ( 1982 ): The ontogeny of the transepithelial potential difference in from embryos. Dev Biol 90: 335 – 339.en_US
dc.identifier.citedreferenceNuccitelli R ( 1938 ): Physiological electric fields can influence cell motility, growth, and polarity. In: Miller K ( ed ). Advances in Cell Biology. Vol 2, p 213. JAI Press, Greenwich.en_US
dc.identifier.citedreferenceNuccitelli R & Erickson CA ( 1983 ): Embryonic cell motility can be guided by physiological electric fields. Exp Cell Res 147: 195 – 201.en_US
dc.identifier.citedreferenceOrida N & Feldman JD ( 1982 ): Directional protrusive pseudopodial activity and motility in macrophages induced by extracellular electric fields. Cell Motil Cytoskeleton 2: 243 – 255.en_US
dc.identifier.citedreferencePatel N & Poo M-m ( 1982 ): Orientation of neurite growth by extracellular electric fields. J Neurosci 2: 483 – 496.en_US
dc.identifier.citedreferenceRobinson KR ( 1985 ): The responses of cells to electric fields: A review. J Cell Biol 101: 2023 – 2027.en_US
dc.identifier.citedreferenceRobinson KR & Stump RF ( 1984 ): Self generated electrical currents through Xenopus neurulae. J Physiol 352: 339 – 352.en_US
dc.identifier.citedreferenceSoong HK, Parkinson WC, Bafna S, Sulik GL & Huang S ( 1990a ): Movements of cultured corneal epithelial cells and stromal fibroblasts in electric fields. Invest Ophthalmol Vis Sci 31: 2278 – 2282.en_US
dc.identifier.citedreferenceSoong HK, Parkinson WC, Sulik GL & Bafna S ( 1990b ): Effects of electric fields on cytoskeleton of corneal stromal fibroblasts. Curr Eye Res 9: 893 – 901.en_US
dc.identifier.citedreferenceStump RF & Robinson KR ( 1983 ): Xenopus neural crest cell migration in an applied electric field. J Cell Biol 97: 1226 – 1233.en_US
dc.identifier.citedreferenceTrinkaus JP ( 1982 ): Some thoughts on directional cell movement during morphogenesis. In: Bellairs R, Curtis A & Dunn G ( eds ). Cell Behaviour, p 471. Cambridge University Press, Cambridge.en_US
dc.identifier.citedreferenceVerwon M ( 1896 ): Untersuchungen Über die polare Erregung der lebendigen Substanz durch den konstanten Strom. III. Mitteliung. Pflugers Arch Eur J Physiol 62: 415 – 450.en_US
dc.identifier.citedreferenceWehland J, Osborn M & Weber K ( 1984 ): Cell to substate contacts in living cells, a direct correlation between interference reflexion and indirect immunofluorescent microscopy using antibodies against actin and neurulae. J Physiol 352: 339 – 352.en_US
dc.identifier.citedreferenceYang WP, Onuma EK & Hui SW ( 1984 ): Response of C3H/10T1/2 fibroblasts to an external steady electric field stimulation: Reorientation, shape change, Con A receptor and intramembranous particle distibution and cytoskeleton reorganization. Exp Cell Res 155: 91 – 104.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.