Show simple item record

Altered growth characteristics of skin fibroblasts from wild-derived mice, and genetic loci regulating fibroblast clone size

dc.contributor.authorYuan, Rongen_US
dc.contributor.authorFlurkey, Kevinen_US
dc.contributor.authorVan Aelst-Bouma, Reneeen_US
dc.contributor.authorZhang, Weidongen_US
dc.contributor.authorKing, Benjaminen_US
dc.contributor.authorAustad, Steveen_US
dc.contributor.authorMiller, Richard A.en_US
dc.contributor.authorHarrison, David E.en_US
dc.date.accessioned2010-06-01T18:12:19Z
dc.date.available2010-06-01T18:12:19Z
dc.date.issued2006-06en_US
dc.identifier.citationYuan, Rong; Flurkey, Kevin; Van Aelst-Bouma, Renee; Zhang, Weidong; King, Benjamin; Austad, Steve; Miller, Richard A.; Harrison, David E. (2006). "Altered growth characteristics of skin fibroblasts from wild-derived mice, and genetic loci regulating fibroblast clone size." Aging Cell 5(3): 203-212. <http://hdl.handle.net/2027.42/71416>en_US
dc.identifier.issn1474-9718en_US
dc.identifier.issn1474-9726en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71416
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=16842493&dopt=citationen_US
dc.description.abstractMouse fibroblast senescence in vitro is an important model for the study of aging at cellular level. However, common laboratory mouse strains may have lost some important allele variations related to aging processes. In this study, growth in vitro of tail skin fibroblasts (TSFs) derived from a wild-derived stock, Pohnpei (Pohn) mice, differed from growth of control C57BL/6 J (B6) TSFs. Pohn TSFs exhibited higher proliferative ability, fewer apoptotic cells, decreased expression of Cip1 , smaller surface areas, fewer cells positive for senescence associated-β-galactosidase (SA-β-gal) and greater resistance to H 2 O 2 -induced SA-β-gal staining and Cip1 expression. These data suggest that TSFs from Pohn mice resist cellular senescence-like changes. Using large clone ratio (LCR) as the phenotype, a quantitative trait locus (QTL) analysis in a Pohn/B6 backcross population found four QTLs for LCR: Fcs1 on Chr 3 at 55 cm; Fcs2 on Chr X at 50 cm; Fcs3 on Chr 4 at 51 cm and Fcs4 on Chr 10 at 25 cm. Together, these four QTLs explain 26.1% of the variations in LCRs in the N2 population. These are the first QTLs reported that regulate fibroblast growth. Glutathione S transferase mu ( GST-mu ) genes are overrepresented in the 95% confidence interval of Fcs1 , and Pohn TSFs have higher H 2 O 2 -induced GST-mu 4 , 5 and 7 mRNA levels than B6 TSFs. These enzymes may protect Pohn TSFs from oxidation.en_US
dc.format.extent241039 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights© 2006 The Authors Journal compilation © Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland 2006en_US
dc.subject.otherFibroblasten_US
dc.subject.otherOxidative Stress (OS)en_US
dc.subject.otherQuantitative Trait Locus (QTL)en_US
dc.titleAltered growth characteristics of skin fibroblasts from wild-derived mice, and genetic loci regulating fibroblast clone sizeen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Pathology, Geriatrics Center, and VA GRECC, University of Michigan School of Medicine, 5316 CCGCB, Box 0940, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherThe Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USAen_US
dc.contributor.affiliationotherDepartment of Cellular & Structural Biology, Barshop Institute for Longevity & Aging Studies, University of Texas Health Science Center, 15355 Lambda Drive, STCBM Bldg. 3.100, San Antonio, TX 78245, USAen_US
dc.identifier.pmid16842493en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71416/1/j.1474-9726.2006.00208.x.pdf
dc.identifier.doi10.1111/j.1474-9726.2006.00208.xen_US
dc.identifier.sourceAging Cellen_US
dc.identifier.citedreferenceAngello JC, Prothero J ( 1989 ) Independent evidence for a commitment model of clonal attenuation. Mech. Ageing Dev. 49, 281 – 286.en_US
dc.identifier.citedreferenceAngello JC, Pendergrass WR, Norwood TH, Prothero J ( 1989 ) Cell enlargement: one possible mechanism underlying cellular senescence. J. Cell. Physiol. 140, 288 – 294.en_US
dc.identifier.citedreferenceAustad SN ( 1996 ) The uses of intraspecific variation in aging research. Exp. Gerontol. 31, 453 – 463.en_US
dc.identifier.citedreferenceBerube NG, Smith JR, Pereira-Smith OM ( 1998 ) The genetics of cellular senescence. Am. J. Hum. Genet. 62, 1015 – 1019.en_US
dc.identifier.citedreferenceBrown JP, Wei W, Sedivy JM ( 1997 ) Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277, 831 – 834.en_US
dc.identifier.citedreferenceCharlesworth B ( 1980 ) Evolution in Age-Structured Populations. Cambridge: Cambridge University Press.en_US
dc.identifier.citedreferenceChen X, Zhang W, Gao YF, Su XQ, Zhai ZH ( 2002 ) Senescence-like changes induced by expression of p21 (waf1/Cip1) in NIH3T3 cell line. Cell Res. 12, 229 – 233.en_US
dc.identifier.citedreferenceCheng JZ, Yang Y, Singh SP, Singhal SS, Awasthi S, Pan SS, Singh SV, Zimniak P, Awasthi YC ( 2001 ) Two distinct 4-hydroxynonenal metabolizing glutathione S-transferase isozymes are differentially expressed in human tissues. Biochem. Biophys. Res. Commun. 282, 1268 – 1274.en_US
dc.identifier.citedreferenceChurchill GA, Doerge RW ( 1994 ) Empirical threshold values for quantitative trait mapping. Genetics 138, 963 – 971.en_US
dc.identifier.citedreferenceCristofalo VJ, Lorenzini A, Allen RG, Torres C, Tresini M ( 2004 ) Replicative senescence: a critical review. Mech. Ageing Dev. 125, 827 – 848.en_US
dc.identifier.citedreferenceel-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B ( 1993 ) WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817 – 825.en_US
dc.identifier.citedreferenceGeiger-Thornsberry GL, Mackay TF ( 2004 ) Quantitative trait loci affecting natural variation in Drosophila longevity. Mech. Ageing Dev. 125, 179 – 189.en_US
dc.identifier.citedreferenceGerland LM, Peyrol S, Lallemand C, Branche R, Magaud JP, Ffrench M ( 2003 ) Association of increased autophagic inclusions labeled for β-galactosidase with fibroblastic aging. Exp. Gerontol. 38, 887 – 895.en_US
dc.identifier.citedreferencede Haan JB, Bladier C, Lotfi-Miri M, Taylor J, Hutchinson P, Crack PJ, Hertzog P, Kola I ( 2004 ) Fibroblasts derived from Gpx1 knockout mice display senescent-like features and are susceptible to H 2 O 2 -mediated cell death. Free Radic. Biol. Med. 36, 53 – 64.en_US
dc.identifier.citedreferenceHayflick L ( 1965 ) The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37, 614 – 636.en_US
dc.identifier.citedreferenceHornsby PJ ( 2003 ) Replicative senescence of human and mouse cells in culture: significance for aging research. Mech. Ageing Dev. 124, 853 – 855.en_US
dc.identifier.citedreferenceIshikawa T, Esterbauer H, Sies H ( 1986 ) Role of cardiac glutathione transferase and of the glutathione S-conjugate export system in biotransformation of 4-hydroxynonenal in the heart. J. Biol. Chem. 261, 1576 – 1581.en_US
dc.identifier.citedreferenceItahana K, Campisi J, Dimri GP ( 2004 ) Mechanisms of cellular senescence in human and mouse cells. Biogerontology 5, 1 – 10.en_US
dc.identifier.citedreferenceJackson AU, Galecki AT, Burke DT, Miller RA ( 2003 ) Genetic polymorphisms in mouse genes regulating age-sensitive and age-stable T cell subsets. Genes Immun. 4, 30 – 39.en_US
dc.identifier.citedreferenceKlebanov S, Astle CM, Roderick TH, Flurkey K, Archer JR, Chen J, Harrison DE ( 2001a ) Maximum life spans in mice are extended by wild strain alleles. Exp. Biol. Med. (Maywood) 226, 854 – 859.en_US
dc.identifier.citedreferenceKlebanov S, Flurkey K, Roderick TH, Archer JR, Astle CM, Chen J, Harrison DE ( 2001b ) Heritability of life span in mice and its implication for direct and indirect selection for longevity. Genetica 110, 209 – 218.en_US
dc.identifier.citedreferenceKrishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-Regaiey K, Su L, Sharpless NE ( 2004 ) Ink4a/Arf expression is a biomarker of aging. J. Clin. Invest. 114, 1299 – 1307.en_US
dc.identifier.citedreferenceKruglyak L, Lander ES ( 1995 ) A nonparametric approach for mapping quantitative trait loci. Genetics 139, 1421 – 1428.en_US
dc.identifier.citedreferenceKujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, Hofer T, Seo AY, Sullivan R, Jobling WA et al. ( 2005 ) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309, 481 – 484.en_US
dc.identifier.citedreferenceKumazaki T, Robetorye RS, Robetorye SC, Smith JR ( 1991 ) Fibronectin expression increases during in vitro cellular senescence: correlation with increased cell area. Exp. Cell Res. 195, 13 – 19.en_US
dc.identifier.citedreferenceLing J, Pi W, Bollag R, Zeng S, Keskintepe M, Saliman H, Krantz S, Whitney B, Tuan D ( 2002 ) The solitary long terminal repeats of ERV-9 endogenous retrovirus are conserved during primate evolution and possess enhancer activities in embryonic and hematopoietic cells. J. Virol. 76, 2410 – 2423.en_US
dc.identifier.citedreferenceMasutomi K, Yu EY, Khurts S, Ben-Porath I, Currier JL, Metz GB, Brooks MW, Kaneko S, Murakami S, DeCaprio JA et al. ( 2003 ) Telomerase maintains telomere structure in normal human cells. Cell 114, 241 – 253.en_US
dc.identifier.citedreferenceMathews CE, Dunn BD, Hannigan MO, Huang CK, Leiter EH ( 2002 ) Genetic control of neutrophil superoxide production in diabetes-resistant ALR/Lt mice. Free Radic. Biol. Med. 32, 744 – 751.en_US
dc.identifier.citedreferenceMcElwee JJ, Schuster E, Blanc E, Thomas JH, Gems D ( 2004 ) Shared transcriptional signature in Caenorhabditis elegans Dauer larvae and long-lived daf-2 mutants implicates detoxification system in longevity assurance. J. Biol. Chem. 279, 44533 – 44543.en_US
dc.identifier.citedreferenceMiller RA, Chrisp C, Atchley W ( 2000a ) Differential longevity in mouse stocks selected for early life growth trajectory. J. Gerontol. A Biol. Sci. Med. Sci. 55, B455 – B461.en_US
dc.identifier.citedreferenceMiller RA, Dysko R, Chrisp C, Seguin R, Linsalata L, Buehner G, Harper JM, Austad S ( 2000b ) Mouse stocks derived from tropical islands: new models for genetic analysis of life history traits. J. Zool. 250, 95 – 104.en_US
dc.identifier.citedreferenceMyakishev MV, Khripin Y, Hu S, Hamer DH ( 2001 ) High-throughput SNP genotyping by allele-specific PCR with universal energy-transfer-labeled primers. Genome Res. 11, 163 – 169.en_US
dc.identifier.citedreferenceParrinello S, Samper E, Krtolica A, Goldstein J, Melov S, Campisi J ( 2003 ) Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat. Cell Biol. 5, 741 – 747.en_US
dc.identifier.citedreferencePeacocke M, Campisi J ( 1991 ) Cellular senescence: a reflection of normal growth control, differentiation, or aging? J. Cell Biochem. 45, 147 – 155.en_US
dc.identifier.citedreferencePendergrass WR, Li Y, Jiang D, Wolf NS ( 1993 ) Decrease in cellular replicative potential in ‘giant’ mice transfected with the bovine growth hormone gene correlates to shortened life span. J. Cell. Physiol. 156, 96 – 103.en_US
dc.identifier.citedreferencePendergrass WR, Li Y, Jiang D, Fei RG, Wolf NS ( 1995 ) Caloric restriction: conservation of cellular replicative capacity in vitro accompanies life-span extension in mice. Exp. Cell Res. 217, 309 – 316.en_US
dc.identifier.citedreferencePetkov PM, Ding Y, Cassell MA, Zhang W, Wagner G, Sargent EE, Asquith S, Crew V, Johnson KA, Robinson P et al. ( 2004 ) An efficient SNP system for mouse genome scanning and elucidating strain relationships. Genome Res. 14, 1806 – 1811.en_US
dc.identifier.citedreferencePignolo RJ, Masoro EJ, Nichols WW, Bradt CI, Cristofalo VJ ( 1992 ) Skin fibroblasts from aged Fischer 344 rats undergo similar changes in replicative life span but not immortalization with caloric restriction of donors. Exp. Cell Res. 201, 16 – 22.en_US
dc.identifier.citedreferenceSen S, Churchill GA ( 2001 ) A statistical framework for quantitative trait mapping. Genetics 159, 371 – 387.en_US
dc.identifier.citedreferenceSerra V, Grune T, Sitte N, Saretzki G, von Zglinicki T ( 2000 ) Telomere length as a marker of oxidative stress in primary human fibroblast cultures. Ann. N. Y. Acad. Sci. 908, 327 – 330.en_US
dc.identifier.citedreferenceSerra V, von Zglinicki T, Lorenz M, Saretzki G ( 2003 ) Extracellular superoxide dismutase is a major antioxidant in human fibroblasts and slows telomere shortening. J. Biol. Chem. 278, 6824 – 6830.en_US
dc.identifier.citedreferenceSmith JR, Pereira-Smith OM, Schneider EL ( 1978 ) Colony size distributions as a measure of in vivo and in vitro aging. Proc. Natl Acad. Sci. USA 75, 1353 – 1356.en_US
dc.identifier.citedreferenceSpitz DR, Sullivan SJ, Malcolm RR, Roberts RJ ( 1991 ) Glutathione dependent metabolism and detoxification of 4-hydroxy-2-nonenal. Free Radic. Biol. Med. 11, 415 – 423.en_US
dc.identifier.citedreferenceStanulis-Praeger BM ( 1987 ) Cellular senescence revisited: a review. Mech. Ageing Dev. 38, 1 – 48.en_US
dc.identifier.citedreferenceVaughn TT, Pletscher LS, Peripato A, King-Ellison K, Adams E, Erikson C, Cheverud JM ( 1999 ) Mapping quantitative trait loci for murine growth: a closer look at genetic architecture. Genet. Res. 74, 313 – 322.en_US
dc.identifier.citedreferenceWilliams GC ( 1957 ) Pleiotropy, natural selection, and the evolution of senescence. Evolution 11, 398 – 411.en_US
dc.identifier.citedreferenceWolf NS, Penn PE, Jiang D, Fei RG, Pendergrass WR ( 1995 ) Caloric restriction: conservation of in vivo cellular replicative capacity accompanies life-span extension in mice. Exp. Cell Res. 217, 317 – 323.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.