Show simple item record

Characterizing spontaneous induction of Stx encoding phages using a selectable reporter system

dc.contributor.authorLivny, Jonathanen_US
dc.contributor.authorFriedman, David I.en_US
dc.date.accessioned2010-06-01T18:13:31Z
dc.date.available2010-06-01T18:13:31Z
dc.date.issued2004-03en_US
dc.identifier.citationLivny, Jonathan; Friedman, David I. (2004). "Characterizing spontaneous induction of Stx encoding phages using a selectable reporter system." Molecular Microbiology 51(6): 1691-1704. <http://hdl.handle.net/2027.42/71436>en_US
dc.identifier.issn0950-382Xen_US
dc.identifier.issn1365-2958en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71436
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15009895&dopt=citationen_US
dc.description.abstractShiga toxin (Stx) genes in Stx producing Escherichia coli (STEC) are encoded in prophages of the λ family, such as H-19B. The subpopulation of STEC lysogens with induced prophages has been postulated to contribute significantly to Stx production and release. To study induced STEC, we developed a s electable in vivo e xpression t echnology, SIVET, a reporter system adapted from the RIVET system. The SIVET lysogen has a defective H-19B prophage encoding the TnpR resolvase gene downstream of the phage P R promoter and a cat gene with an inserted tet gene flanked by targets for the TnpR resolvase. Expression of resolvase results in excision of tet , restoring a functional cat gene; induced lysogens survive and are chloramphenicol resistant. Using SIVET we show that: (i) approximately 0.005% of the H-19B lysogens are spontaneously induced per generation during growth in LB. (ii) Variations in cellular physiology (e.g. RecA protein) rather than in levels of expressed repressor explain why members of a lysogen population are spontaneously induced. (iii) A greater fraction of lysogens with stx encoding prophages are induced compared to lysogens with non-Stx encoding prophages, suggesting increased sensitivity to inducing signal(s) has been selected in Stx encoding prophages. (iv) Only a small fraction of the lysogens in a culture spontaneously induce and when the lysogen carries two lambdoid prophages with different repressor/operators, 933W and H-19B, usually both prophages in the same cell are induced.en_US
dc.format.extent463051 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2004 Blackwell Publishing Ltden_US
dc.titleCharacterizing spontaneous induction of Stx encoding phages using a selectable reporter systemen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumProgram in Cell and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA.en_US
dc.contributor.affiliationumDepartment of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.en_US
dc.identifier.pmid15009895en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71436/1/j.1365-2958.2003.03934.x.pdf
dc.identifier.doi10.1111/j.1365-2958.2003.03934.xen_US
dc.identifier.sourceMolecular Microbiologyen_US
dc.identifier.citedreferenceBarksdale, L., and Arden, S. B. ( 1974 ) Persisting bacteriophage infections, lysogeny, and phage conversions. Annu Rev Microbiol 0: 265 – 299.en_US
dc.identifier.citedreferenceBertani, G. ( 1951 ) Studies of Lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62: 293 – 300.en_US
dc.identifier.citedreferenceBochner, B. R., Huang, H. C., Schieven, G. L., and Ames, B. N. ( 1980 ) Positive selection for loss of tetracycline resistance. J Bacteriol 143: 926 – 933.en_US
dc.identifier.citedreferenceBolivar, F. ( 1978 ) Construction and characterization of new cloning vehicles. III. Derivatives of plasmid pBR322 carrying unique Eco RI sites for selection of Eco RI generated recombinant DNA molecules. Gene 4: 121 – 136.en_US
dc.identifier.citedreferenceBoyd, E. F., and Brussow, H. ( 2002 ) Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved. Trends Microbiol 10: 521 – 529.en_US
dc.identifier.citedreferenceBrooks, K., and Clark, A. J. ( 1967 ) Behavior of lambda bacteriophage in a recombination deficienct strain of Escherichia coli. J Virol 1: 283 – 293.en_US
dc.identifier.citedreferenceBroudy, T. B., Pancholi, V., and Fischetti, V. A. ( 2001 ) Induction of lysogenic bacteriophage and phage-associated toxin from group a streptococci during coculture with human pharyngeal cells. Infect Immun 69: 1440 – 1443.en_US
dc.identifier.citedreferenceCalderwood, S. B., Auclair, F., Donohue-Rolfe, A., Keusch, G. T., and Mekalanos, J. J. ( 1987 ) Nucleotide sequence of the Shiga-like toxin genes of Escherichia coli. Proc Natl Acad Sci USA 84: 4364 – 4368.en_US
dc.identifier.citedreferenceCamilli, A., and Mekalanos, J. J. ( 1995 ) Use of recombinase gene fusions to identify Vibrio cholerae genes induced during infection. Mol Microbiol 18: 671 – 683.en_US
dc.identifier.citedreferenceCamilli, A., Beattie, D. T., and Mekalanos, J. J. ( 1994 ) Use of genetic recombination as a reporter of gene expression. Proc Natl Acad Sci USA 91: 2634 – 2638.en_US
dc.identifier.citedreferenceCourt, D. L., and Oppenheim, A. ( 1983 ) Phage lambda's accessory genes. In Lambda II. Hendrix, R. W., Roberts, J. W., Stahl, F. W., and Weisberg, R. A., (eds). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, pp. 251 – 278.en_US
dc.identifier.citedreferenceCourt, D. L., Sawitzke, J. A., and Thomason, L. C. ( 2002 ) Genetic engineering using homologous recombination. Annu Rev Genet 36: 361 – 388.en_US
dc.identifier.citedreferenceDatz, M., Janetzki-Mittmann, C., Franke, S., Gunzer, F., Schmidt, H., and Karch, H. ( 1996 ) Analysis of the enterohemorrhagic Escherichia coli O157 DNA region containing lambdoid phage gene P and Shiga-like toxin structural genes. Appl Environ Microbiol 62: 791 – 797.en_US
dc.identifier.citedreferenceDe Grandis, S., Ginsberg, J., Toone, M., Climie, S., Friesen, J., and Brunton, J. ( 1987 ) Nucleotide sequence and promoter mapping of the Escherichia coli Shiga-like toxin operon of bacteriophage H-19B. J Bacteriol 169: 4313 – 4319.en_US
dc.identifier.citedreferenceDodd, I. B., Perkins, A. J., Tsemitsidis, D., and Egan, J. B. ( 2001 ) Octamerization of lambda CI repressor is needed for effective repression of P (RM) and efficient switching from lysogeny. Genes Dev 15: 3013 – 3022.en_US
dc.identifier.citedreferenceEisen, H., Pereira da Silva, L., and Jacob, F. ( 1968 ) The regulation and mechanism of DNA synthesis in bacteriophage lambda. Cold Spring Harb Symp Quant Biol 33: 755 – 764.en_US
dc.identifier.citedreferenceFriedberg, E. C., Walker, G. C., and Siede, W. S. ( 1995 ) DNA repair and mutagenesis. Washington, DC: Am Soc Microbiol Press.en_US
dc.identifier.citedreferenceFuchs, S., Muhldorfer, I., Donohue-Rolfe, A., Kerenyi, M., Emody, L., Alexiev, R., et al. ( 1999 ) Influence of RecA on in vivo virulence and Shiga toxin 2 production in Escherichia coli pathogens. Microb Pathog 27: 13 – 23.en_US
dc.identifier.citedreferenceGottesman, M. E., and Yarmolinsky, M. B. ( 1968 ) Integration-negative mutants of bacteriophage lambda. J Mol Biol 31: 487 – 505.en_US
dc.identifier.citedreferenceGrindley, N. D. ( 1983 ) Transposition of Tn 3 and related transposons. Cell 32: 3 – 5.en_US
dc.identifier.citedreferenceGussin, G. N., Johnson, A. D., Pabo, C. O., and Sauer, R. T. ( 1983 ) Repressor and Cro protein: structure, function, and role in lysogenization. In Lambda II. Hendrix, R. W., Roberts, J. W., Stahl, F. W., and Weisberg, R. A., (eds). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, pp. 93 – 121.en_US
dc.identifier.citedreferenceHeffron, F. ( 1983 ) Tn 3 and its relatives. In Mobile Genetic Elements. Shapiro, J. A., (ed). New York, NY: Academic Press, pp. 223 – 260.en_US
dc.identifier.citedreferenceHendrix, R. W., Roberts, J. W., Stahl, F. W., and Weisberg, R. A. ( 1983 ) Lambda II. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.en_US
dc.identifier.citedreferenceHertman, I., and Luria, S. E. ( 1967 ) Transduction studies on the role of a rec+ gene in the ultraviolet induction of prophage lambda. J Mol Biol 23: 117 – 133.en_US
dc.identifier.citedreferenceHeyderman, R. S., Soriani, M., and Hirst, T. R. ( 2001 ) Is immune cell activation the missing link in the pathogenesis of post-diarrhoeal HUS? Trends Microbiol 9: 262 – 266.en_US
dc.identifier.citedreferenceKarch, H., Bielaszewska, M., Bitzan, M., and Schmidt, H. ( 1999 ) Epidemiology and diagnosis of Shiga toxin-producing Escherichia coli infections. Diagn Microbiol Infect Dis 34: 229 – 243.en_US
dc.identifier.citedreferenceKim, B., and Little, J. W. ( 1993 ) LexA and lambda Cl repressors as enzymes: specific cleavage in an intermolecular reaction. Cell 73: 1165 – 1173.en_US
dc.identifier.citedreferenceLee, S. H., Hava, D. L., Waldor, M. K., and Camilli, A. ( 1999 ) Regulation and temporal expression patterns of Vibrio cholerae virulence genes during infection. Cell 99: 625 – 634.en_US
dc.identifier.citedreferenceLevine, A., Bailone, A., and Devoret, R. ( 1979 ) Cellular levels of the prophage lambda and 434 repressors. J Mol Biol 131: 655 – 661.en_US
dc.identifier.citedreferenceLin, L. L., and Little, J. W. ( 1988 ) Isolation and characterization of noncleavable (Ind-) mutants of the LexA repressor of Escherichia coli K-12. J Bacteriol 170: 2163 – 2173.en_US
dc.identifier.citedreferenceLittle, J. W. ( 1984 ) Autodigestion of lexA and phage lambda repressors. Proc Natl Acad Sci USA 81: 1375 – 1379.en_US
dc.identifier.citedreferenceLittle, J. W., and Mount, D. W. ( 1982 ) The SOS regulatory system of Escherichia coli. Cell 29: 11 – 22.en_US
dc.identifier.citedreferenceLittle, J. W., Shepley, D. P., and Wert, D. W. ( 1999 ) Robustness of a gene regulatory circuit. EMBO J 18: 4299 – 4307.en_US
dc.identifier.citedreferenceLwoff, A. ( 1953 ) Lysogeny. Bacteriol Rev 17: 269 – 337.en_US
dc.identifier.citedreferenceMiller, H. I., and Friedman, D. I. ( 1980 ) An E. coli gene product required for lambda site-specific recombination. Cell 20: 711 – 719.en_US
dc.identifier.citedreferenceNeely, M. N., and Friedman, D. I. ( 1998a ) Functional and genetic analysis of regulatory regions of coliphage H-19B: location of shiga-like toxin and lysis genes suggest a role for phage functions in toxin release. Mol Microbiol 28: 1255 – 1267.en_US
dc.identifier.citedreferenceNeely, M. N., and Friedman, D. I. ( 1998b ) Arrangement and functional identification of genes in the regulatory region of lambdoid phage H-19B, a carrier of a Shiga-like toxin. Gene 223: 105 – 113.en_US
dc.identifier.citedreferenceNewland, J. W., and Neill, R. J. ( 1988 ) DNA probes for Shiga-like toxins I and II and for toxin-converting bacteriophages. J Clin Microbiol 26: 1292 – 1297.en_US
dc.identifier.citedreferenceO'Brien, A. D., Newland, J. W., Miller, S. F., Holmes, R. K., Smith, H. W., and Formal, S. B. ( 1984 ) Shiga-like toxin-converting phages from Escherichia coli strains that cause hemorrhagic colitis or infantile diarrhea. Science 226: 694 – 696.en_US
dc.identifier.citedreferencePirrotta, V., and Ptashne, M. ( 1969 ) Isolation of the 434 phage repressor. Nature 222: 541 – 544.en_US
dc.identifier.citedreferencePlunkett, G., 3rd, Rose, D. J., Durfee, T. J., and Blattner, F. R. ( 1999 ) Sequence of Shiga toxin 2 phage 933W from Escherichia coli O157: H7: Shiga toxin as a phage late-gene product. J Bacteriol 181: 1767 – 1778.en_US
dc.identifier.citedreferencePtashne, M. ( 1992 ) A Genetic Switch. Cambridge, MA: Cell Press and Blackwell Publications.en_US
dc.identifier.citedreferenceReed, R. R., Shibuya, G. I., and Steitz, J. A. ( 1982 ) Nucleotide sequence of gamma delta resolvase gene and demonstration that its gene product acts as a repressor of transcription. Nature 300: 381 – 383.en_US
dc.identifier.citedreferenceRevet, B., von Wilcken-Bergmann, B., Bessert, H., Barker, A., and Muller-Hill, B. ( 1999 ) Four dimers of lambda repressor bound to two suitably spaced pairs of lambda operators form octamers and DNA loops over large distances. Curr Biol 9: 151 – 154.en_US
dc.identifier.citedreferenceRoberts, J. W., and Devoret, R. ( 1983 ) Lysogenic induction. In Lambda II. Hendrix, R. W., Roberts, J. W., Stahl, F. W., and Weisberg, R. A., (eds). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, pp. 123 – 144.en_US
dc.identifier.citedreferenceSambrook, J., and Fritsch,, E. M. ( 1989 ) Molecular Cloning, A laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Press.en_US
dc.identifier.citedreferenceShi, T., and Friedman, D. I. ( 2001 ) The operator-early promoter regions of Shiga-toxin bearing phage H-19B. Mol Microbiol 41: 585 – 599.en_US
dc.identifier.citedreferenceShinagawa, H., and Ito, T. ( 1973 ) Inactivation of DNA-binding activity of repressor in extracts of lambda-lysogen treated with mitomycin C. Mol Gen Genet 126: 103 – 110.en_US
dc.identifier.citedreferenceSjogren, R., Neill, R., Rachmilewitz, D., Fritz, D., Newland, J., Sharpnack, D., et al. ( 1994 ) Role of Shiga-like toxin I in bacterial enteritis: comparison between isogenic Escherichia coli strains induced in rabbits. Gastroenterology 106: 306 – 317.en_US
dc.identifier.citedreferenceSmith, H. W., and Linggood, M. A. ( 1971 ) The transmissible nature of enterotoxin production in a human enteropathogenic strain of Escherichia coli. J Med Microbiol 4: 301 – 305.en_US
dc.identifier.citedreferenceSussman, R., and Jacob, F. ( 1962 ) Sur un systeme de repression thermosensible ch2 le bacteriophage 1 d’ Escherichia coli. C R Acad Sci Paris 254: 1517 – 1519.en_US
dc.identifier.citedreferenceSutcliffe, J. G. ( 1979 ) Complete nucleotide sequence of the Escherichia coli plasmid pBR322. Cold Spring Harb Symp Quant Biol 43 Part 1: 77 – 90.en_US
dc.identifier.citedreferenceThomason, L. C., Bubunenko, M., Constantino, N., Wilson, H. R., Oppenheim, A., and Court, D. L. ( 2003 ) Recombineering-genetic engineering in bacteria using homologous recombination. In Current Protocols in Molecular Biology. Ausubel, F. M., Brent, R. E., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, K., and Struhl, K., (eds). John Wiley and Sons, Unit.1.16.en_US
dc.identifier.citedreferenceToman, Z., Dambly-Chaudiere, C., Tenenbaum, L., and Radman, M. ( 1985 ) A system for detection of genetic and epigenetic alterations in Escherichia coli induced by DNA-damaging agents. J Mol Biol 186: 97 – 105.en_US
dc.identifier.citedreferenceUnkmeir, A., and Schmidt, H. ( 2000 ) Structural analysis of phage-borne stx genes and their flanking sequences in shiga toxin-producing Escherichia coli and Shigella dysenteriae type 1 strains. Infect Immun 68: 4856 – 4864.en_US
dc.identifier.citedreferenceWagner, P. L., and Waldor, M. K. ( 2002 ) Bacteriophage control of bacterial virulence. Infect Immun 70: 3985 – 3993.en_US
dc.identifier.citedreferenceWagner, P. L., Acheson, D. W., and Waldor, M. K. ( 2001a ) Human neutrophils and their products induce Shiga toxin production by enterohemorrhagic Escherichia coli. Infect Immun 69: 1934 – 1937.en_US
dc.identifier.citedreferenceWagner, P. L., Neely, M. N., Zhang, X., Acheson, D. W., Waldor, M. K., and Friedman, D. I. ( 2001b ) Role for a phage promoter in Shiga toxin 2 expression from a pathogenic Escherichia coli strain. J Bacteriol 183: 2081 – 2085.en_US
dc.identifier.citedreferenceWagner, P. L., Livny, J., Neely, M. N., Acheson, D. W., Friedman, D. I., and Waldor, M. K. ( 2002 ) Bacteriophage control of Shiga toxin 1 production and release by Escherichia coli. Mol Microbiol 44: 957 – 970.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.