Show simple item record

RpoS co-operates with other factors to induce Legionella pneumophila virulence in the stationary phase

dc.contributor.authorBachman, Michael A.en_US
dc.contributor.authorSwanson, Michele S.en_US
dc.date.accessioned2010-06-01T18:15:27Z
dc.date.available2010-06-01T18:15:27Z
dc.date.issued2001-06en_US
dc.identifier.citationBachman, Michael A.; Swanson, Michele S. (2001). "RpoS co-operates with other factors to induce Legionella pneumophila virulence in the stationary phase." Molecular Microbiology 40(5): 1201-1214. <http://hdl.handle.net/2027.42/71468>en_US
dc.identifier.issn0950-382Xen_US
dc.identifier.issn1365-2958en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71468
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=11401723&dopt=citationen_US
dc.format.extent360732 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rightsBlackwell Science Ltden_US
dc.titleRpoS co-operates with other factors to induce Legionella pneumophila virulence in the stationary phaseen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Microbiology and Immunology, The University of Michigan Medical School, 6734 Medical Sciences II, Ann Arbor, MI 48109, USA.en_US
dc.identifier.pmid11401723en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71468/1/j.1365-2958.2001.02465.x.pdf
dc.identifier.doi10.1046/j.1365-2958.2001.02465.xen_US
dc.identifier.sourceMolecular Microbiologyen_US
dc.identifier.citedreferenceAlli, O.A., Gao, L.Y., Pedersen, L.L., Zink, S., Radulic, M., Doric, M., Abu Kwaik, Y. ( 2000 ) Temporal pore formation-mediated egress from macrophages and alveolar epithelial cells by Legionella pneumophila. Infect Immun 68: 6431 – 6440.en_US
dc.identifier.citedreferenceBadger, J.L. & Miller, V.L. ( 1995 ) Role of RpoS in survival of Yersinia enterocolitica to a variety of environmental stresses. J Bacteriol 177: 5370 – 5373.en_US
dc.identifier.citedreferenceBerger, K.H. & Isberg, R.R. ( 1993 ) Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila. Mol Microbiol 7: 7 – 19.en_US
dc.identifier.citedreferenceBohannon, D.E., Connell, N., Keener, J., Tormo, A., Espinosa-Urgel, M., Zambrano, M.M., Kolter, R. ( 1991 ) Stationary-phase-inducible ‘gearbox’ promoters: differential effects of katF mutations and role of sigma 70. J Bacteriol 173: 4482 – 4492.en_US
dc.identifier.citedreferenceByrne, B. & Swanson, M.S. ( 1998 ) Expression of Legionella pneumophila virulence traits in response to growth conditions. Infect Immun 66: 3029 – 3034.en_US
dc.identifier.citedreferenceCashel, M., Gentry, D.R., Hernandez, V.J., Vinella, D. ( 1996 ) The stringent response. In Escherichia coli and Salmonella: Cellular and Molecular Biology. Neidhardt, F.C. (ed. in chief). Washington, DC: American Society for Microbiology Press, 1458 – 1496.en_US
dc.identifier.citedreferenceDunn, W.A. ( 1994 ) Autophagy and related mechanisms of lysosome-mediated protein degradation. Trends Cell Biol 4: 139 – 143.en_US
dc.identifier.citedreferenceFang, F.C., Libby, S.J., Buchmeier, N.A., Loewen, P.C., Switala, J., Harwood, J., Guiney, D.G. ( 1992 ) The alternative sigma factor katF (rpoS) regulates Salmonella virulence. Proc Natl Acad Sci USA 89: 11978 – 11982.en_US
dc.identifier.citedreferenceFarewell, A., Kvint, K., Nystrom, T. ( 1998 ) Negative regulation by RpoS: a case of sigma factor competition. Mol Microbiol 29: 1039 – 1051.en_US
dc.identifier.citedreferenceGao, L.Y., Harb, O.S., Abu Kwaik, Y. ( 1997 ) Utilization of similar mechanisms by Legionella pneumophila to parasitize two evolutionarily distant host cells, mammalian macrophages and protozoa. Infect Immun 65: 4738 – 4746.en_US
dc.identifier.citedreferenceGentry, D.R., Hernandez, V.J., Nguyen, L.H., Jensen, D.B., Cashel, M. ( 1993 ) Synthesis of the stationary-phase sigma factor σ s is positively regulated by ppGpp. J Bacteriol 175: 7982 – 7989.en_US
dc.identifier.citedreferenceHales, L.M. & Shuman, H.A. ( 1999 ) The Legionella pneumophila rpoS gene is required for growth within Acanthamoeba castellanii. J Bacteriol 181: 4879 – 4889.en_US
dc.identifier.citedreferenceHammer, B.K. & Swanson, M.S. ( 1999 ) Co-ordination of Legionella pneumophila virulence with entry into stationary phase by ppGpp. Mol Microbiol 33: 721 – 731.en_US
dc.identifier.citedreferenceHengge-Aronis, R. ( 1996 ) Regulation of gene expression during entry into stationary phase. In Escherichia coli and Salmonella: Cellular and Molecular Biology. Neidhardt, F.C. (ed.). Washington, DC: American Society for Microbiology Press, pp. 1497 – 1512.en_US
dc.identifier.citedreferenceHorwitz, M.A. ( 1983a ) Formation of a novel phagosome by the Legionnaires' disease bacterium ( Legionella pneumophila ) in human monocytes. J Exp Med 158: 1319 – 1331.en_US
dc.identifier.citedreferenceHorwitz, M.A. ( 1983b ) The Legionnaires' disease bacterium ( Legionella pneumophila ) inhibits phagosome lysosome fusion in human monocytes. J Exp Med 158: 2108 – 2126.en_US
dc.identifier.citedreferenceHorwitz, M.A. & Maxfield, F.R. ( 1984 ) Legionella pneumophila inhibits acidification of its phagosome in human monocytes. J Cell Biol 99: 1936 – 1943.en_US
dc.identifier.citedreferenceIriarte, M., Stainier, I., Cornelis, G.R. ( 1995 ) The rpoS gene from Yersinia enterocolitica and its influence on expression of virulence factors. Infect Immun 63: 1840 – 1847.en_US
dc.identifier.citedreferenceJoshi, A.D. & Swanson, M.S. ( 1999 ) Comparative analysis of Legionella pneumophila and Legionella micdadei virulence traits. Infect Immun 67: 4134 – 4142.en_US
dc.identifier.citedreferenceJoshi, A.D., Sturgill-Koszycki, S., Swanson, M.S. ( 2001 ) Evidence that Dot-dependent and -independent isolate the Legionella pneumophila phagosome from the endocytic network. Cell Microbiol 3: 99 – 114.en_US
dc.identifier.citedreferenceKirby, J.E., Vogel, J.P., Andrews, H.L., Isberg, R.R. ( 1998 ) Evidence of pore-forming ability by Legionella pneumophila. Mol Microbiol 27: 323 – 336.en_US
dc.identifier.citedreferenceLange, R. & Hengge-Aronis, R. ( 1994 ) The nlpD gene is located in an operon with rpoS on the Escherichia coli chromosome and encodes a novel lipoprotein with a potential function in cell wall formation. Mol Microbiol 13: 733 – 743.en_US
dc.identifier.citedreferenceLange, R., Fischer, D., Hengge-Aronis, R. ( 1995 ) Identification of transcriptional start sites and the role of ppGpp in the expression of rpoS, the structural gene for the sigma S subunit of RNA polymerase in Escherichia coli. J Bacteriol 177: 4676 – 4680.en_US
dc.identifier.citedreferenceMacMicking, J., Xie, Q.W., Nathan, C. ( 1997 ) Nitric oxide and macrophage function. Annu Rev Immunol 15: 323 – 350.en_US
dc.identifier.citedreferenceMerrell, D.S., Tischler, A.D., Lee, S.H., Camilli, A. ( 2000 ) Vibrio cholerae requires rpoS for efficient intestinal colonization. Infect Immun 68: 6691 – 6696.en_US
dc.identifier.citedreferenceMuder, R.R., Yu, V.L., Fang, G.-D. ( 1989 ) Community-acquired Legionnaires' disease. Semin Respir Infect 4: 32 – 39.en_US
dc.identifier.citedreferenceRogers, J. & Keevil, C.W. ( 1992 ) Immunogold and fluorescein immunolabelling of Legionella pneumophila within an aquatic biofilm visualized by using episcopic differential interference contrast microscopy. Appl Environ Microbiol 58: 2326 – 2330.en_US
dc.identifier.citedreferenceRogers, J., Dowsett, A.B., Dennis, P.J., Lee, J.V., Keevil, C.W. ( 1994 ) Influence of temperature and plumbing material selection on biofilm formation and growth of Legionella pneumophila in a model potable water system containing complex microbial flora. Appl Environ Microbiol 60: 1585 – 1592.en_US
dc.identifier.citedreferenceRowbotham, T.J. ( 1980 ) Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. J Clin Pathol 33: 1179 – 1183.en_US
dc.identifier.citedreferenceRoy, C.R., Berger, K.H., Isberg, R.R. ( 1998 ) Legionella pneumophila DotA protein is required for early phagosome trafficking decisions that occur within minutes of bacterial uptake. Mol Microbiol 28: 663 – 674.en_US
dc.identifier.citedreferenceSadosky, A.B., Wiater, L.A., Shuman, H.A. ( 1993 ) Identification of Legionella pneumophila genes required for growth within and killing of human macrophages. Infect Immun 61: 5361 – 5373.en_US
dc.identifier.citedreferenceSegal, G. & Shuman, H.A. ( 1998 ) Intracellular multiplication and human macrophage killing by Legionella pneumophila are inhibited by conjugal components of IncQ plasmid RSF1010. Mol Microbiol 30: 197 – 208.en_US
dc.identifier.citedreferenceSegal, G. & Shuman, H.A. ( 1999 ) Legionella pneumophila utilize the same genes to multiply within Acanthamoeba castellanii and human macrophages. Infect Immun 67: 2117 – 2124.en_US
dc.identifier.citedreferenceSkorupski, K. & Taylor, R.K. ( 1996 ) Positive selection vectors for allelic exchange. Gene 169: 47 – 52.en_US
dc.identifier.citedreferenceSmall, P., Blankenhorn, D., Welty, D., Zinser, E., Slonczewski, J.L. ( 1994 ) Acid and base resistance in Escherichia coli and Shigella flexneri: role of rpoS and growth pH. J Bacteriol 176: 1729 – 1737.en_US
dc.identifier.citedreferenceSturgill-Koszycki, S. & Swanson, M.S. ( 2000 ) Legionella pneumophila replication vacuoles mature into acidic, endocytic organelles. J Exp Med 191: 1 – 13.en_US
dc.identifier.citedreferenceSwanson, M.S. & Hammer, B.K. ( 2000 ) Legionella pneumophila pathogenesis: a fateful journey from amoebae to macrophages. Annu Rev Microbiol 54: 567 – 613.en_US
dc.identifier.citedreferenceSwanson, M.S. & Isberg, R.R. ( 1995 ) Association of Legionella pneumophila with the macrophage endoplasmic reticulum. Infect Immun 63: 3609 – 3620.en_US
dc.identifier.citedreferenceSwanson, M.S. & Isberg, R.R. ( 1996 ) Identification of Legionella pneumophila mutants that have aberrant intracellular fates. Infect Immun 64: 2585 – 2594.en_US
dc.identifier.citedreferenceVazquez-Torres, A., Jones-Carson, J., Mastroeni, P., Ischiropoulos, H., Fang, F.C. ( 2000 ) Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I. Effects on microbial killing by activated peritoneal macrophages in vitro. J Exp Med 192: 227 – 236.en_US
dc.identifier.citedreferenceVogel, J.P. & Isberg, R.R. ( 1999 ) Cell biology of Legionella pneumophila. Curr Opin Microbiology 2: 30 – 34.en_US
dc.identifier.citedreferenceVogel, J.P., Roy, C., Isberg, R.R. ( 1996 ) Use of salt to isolate Legionella pneumophila mutants unable to replicate in macrophages. Ann NY Acad Sci 797: 271 – 272.en_US
dc.identifier.citedreferenceVogel, J.P., Andrews, H.L., Wong, S.K., Isberg, R.R. ( 1998 ) Conjugative transfer by the virulence system of Legionella pneumophila. Science 279: 873 – 876.en_US
dc.identifier.citedreferenceWilson, C. & Dombroski, A.J. ( 1997 ) Region 1 of sigma70 is required for efficient isomerization and initiation of transcription by Escherichia coli RNA polymerase. J Mol Biol 267: 60 – 74.en_US
dc.identifier.citedreferenceYildiz, F.H. & Schoolnik, G.K. ( 1998 ) Role of rpoS in stress survival and virulence of Vibrio cholerae. J Bacteriol 180: 773 – 784.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.