Show simple item record

Developmental regulation of skull morphology II: ontogenetic dynamics of covariance

dc.contributor.authorZelditch, Miriam Leahen_US
dc.contributor.authorMezey, Jasonen_US
dc.contributor.authorSheets, H. Daviden_US
dc.contributor.authorLundrigan, Barbara L.en_US
dc.contributor.authorGarland, Theodoreen_US
dc.date.accessioned2010-06-01T18:15:42Z
dc.date.available2010-06-01T18:15:42Z
dc.date.issued2006-01en_US
dc.identifier.citationZelditch, Miriam Leah; Mezey, Jason; Sheets, H . David; Lundrigan, Barbara L.; Garland, Theodore (2006). "Developmental regulation of skull morphology II: ontogenetic dynamics of covariance." Evolution & Development 8(1): 46-60. <http://hdl.handle.net/2027.42/71472>en_US
dc.identifier.issn1520-541Xen_US
dc.identifier.issn1525-142Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71472
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=16409382&dopt=citationen_US
dc.description.abstractCanalization may play a critical role in molding patterns of integration when variability is regulated by the balance between processes that generate and remove variation. Under these conditions, the interaction among those processes may produce a dynamic structure of integration even when the level of variability is constant. To determine whether the constancy of variance in skull shape throughout most of postnatal growth results from a balance between processes generating and removing variation, we compare covariance structures from age to age in two rodent species, cotton rats ( Sigmodon fulviventer ) and house mice ( Mus musculus domesticus ). We assess the overall similarity of covariance matrices by the matrix correlation, and compare the structures of covariance matrices using common subspace analysis, a method related to common principal components (PCs) analysis but suited to cases in which variation is so nearly spherical that PCs are ambiguous. We find significant differences from age to age in covariance structure and the more effectively canalized ones tend to be least stable in covariance structure. We find no evidence that canalization gradually and preferentially removes deviations arising early in development as we might expect if canalization results from compensatory differential growth. Our results suggest that (co)variation patterns are continually restructured by processes that equilibrate variance, and thus that canalization plays a critical role in molding patterns of integration.en_US
dc.format.extent856660 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Incen_US
dc.rights© 2006 BLACKWELL PUBLISHING, INC.en_US
dc.titleDevelopmental regulation of skull morphology II: ontogenetic dynamics of covarianceen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumMuseum of Paleontology, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationumMichigan State University Museum and Department of Zoology, Michigan State University, East Lansing, MI 48824, USAen_US
dc.contributor.affiliationotherCenter for Population Biology, University of California, Davis, CA 95616, USAen_US
dc.contributor.affiliationotherDepartment of Physics, Canisius College, Buffalo, NY 14208, USAen_US
dc.contributor.affiliationotherDepartment of Biology, University of California, Riverside, CA 92521, USAen_US
dc.identifier.pmid16409382en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71472/1/j.1525-142X.2006.05074.x.pdf
dc.identifier.doi10.1111/j.1525-142X.2006.05074.xen_US
dc.identifier.sourceEvolution & Developmenten_US
dc.identifier.citedreferenceAnderson, T. W. 1963. Asymptotic theory for principal components. Ann. of Math. Stat. 34: 122 – 148.en_US
dc.identifier.citedreferenceAtchley, W. R., Rutledge, J. J., and Cowley, D. C. 1981. Genetic components of size and shape. II. Multivariate covariance patterns in the rat and mouse skull. Evolution 35: 1037 – 1055.en_US
dc.identifier.citedreferenceBookstein, F. L., 1991. Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, Cambridge.en_US
dc.identifier.citedreferenceChamay, A., and Tchantz, P. 1972. Mechanical influences in bone remodeling. Experimental research on Wolff's Law. J. Biomech. 5: 173 – 180.en_US
dc.identifier.citedreferenceCheverud, J. M. 1982. Phenotypic, genetic and environmental integration in the cranium. Evolution 36: 499 – 512.en_US
dc.identifier.citedreferenceCheverud, J. M. 1984. Quantitative genetics and developmental constraints on evolution. J. Theor. Biol. 101: 155 – 171.en_US
dc.identifier.citedreferenceCheverud, J. M. 1995. Morphological integration in the saddle-back tamarin ( Saguinus fuscicollis ) cranium. Am. Nat. 145: 63 – 89.en_US
dc.identifier.citedreferenceCheverud, J. M. 1996. Developmental integration and the evolution of pleiotropy. Am. Zool. 36: 44 – 50.en_US
dc.identifier.citedreferenceCheverud, J. M., Wagner, G. P., and Dow, M. M. 1989. Methods for the comparative analysis of variation patterns. Syst. Zool. 38: 201 – 213.en_US
dc.identifier.citedreferenceDebat, V., Alibert, P., David, P., Paradis, E., and Auffray, J. -C. 2000. Independence between developmental stability and canalization in the skull of the house mouse. Proc. R. Soc. London B 267: 423 – 430.en_US
dc.identifier.citedreferenceFitzgerald, J., and Hughes-Fulford, M. 1999. Mechanically induced c-fos expression is mediated by cAMP in MC3T3-E1 osteoblasts. FASEB J. 13: 553 – 557.en_US
dc.identifier.citedreferenceFlury, B. 1987. Two generalizations of the common principal component model. Biometrika 74: 59 – 69.en_US
dc.identifier.citedreferenceFlury, B. 1988. Common Principal Components and Related Multivariate Models. Wiley, New York.en_US
dc.identifier.citedreferenceHallgrÍmsson, B., Willmore, K., Dorval, C., and Cooper, D. M. L. 2004. Craniofacial variability and modularity in macaques and mice. J. Exp. Zool. 302B: 207 – 225.en_US
dc.identifier.citedreferenceHatton, J. P., Pooran, M., Li, C. -F., Luzzio, C., and Hughes-Fulford, M. 2003. A short pulse of mechanical force induces gene expression and growth in MC3T3-E1 osteoblasts via an ERK 1/2 pathway. J. Bone Miner. Res. 18: 58 – 66.en_US
dc.identifier.citedreferenceKellner, J. R, and Alford, R. A. 2003. The ontogeny of fluctuating asymmetry. Am. Nat. 161: 931 – 947.en_US
dc.identifier.citedreferenceKlingenberg, C. P., Barluenga, M., and Meyer, A. 2002. Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry. Evolution 56: 1909 – 1920.en_US
dc.identifier.citedreferenceKlingenberg, C. P., Mebus, K., and Auffray, J. -C. 2003. Developmental integration in a complex morphological structure: how distinct are the modules in the mouse mandible? Evol. Dev. 5: 522 – 531.en_US
dc.identifier.citedreferenceKrzanowski, W. J. 1979. Between-groups comparisons of principal components. J. Am. Stat. Assoc. 74: 703 – 701, Correction (1981) 76: 1022.en_US
dc.identifier.citedreferenceKrzanowski, W. J. 1982. Between-groups comparisons of principal components—some sampling results. J. Stat. Comput. Simulation 15: 141 – 154.en_US
dc.identifier.citedreferenceLanyon, L. E. 1984. Functional strain as a determinant for bone remodeling. Calcified Tissues Int. 37: 119 – 124.en_US
dc.identifier.citedreferenceLieberman, D. E., and Pearson, O. M. 2001. Trade-off between modeling and remodeling responses to loading in the mammalian limb. Bull. Museum Comp. Zool. 156: 269 – 282.en_US
dc.identifier.citedreferenceMantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Res. 27: 209 – 220.en_US
dc.identifier.citedreferenceMarquez, E. 2004. MACE: Matrix correlations for landmark data, ver. 1.1. Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.en_US
dc.identifier.citedreferenceMarroig, G., and Cheverud, J. M. 2001. A comparison of phenotypic variation and covariation patterns and the role of phylogeny, ecology and ontogeny during cranial evolution of New World monkeys. Evolution 55: 2576 – 2600.en_US
dc.identifier.citedreferenceMathworks. 2000. MATLAB. The Mathworks, Natick, MA.en_US
dc.identifier.citedreferenceOlson, E. C., and Miller, R. L. 1958. Morphological Integration. University of Chicago Press, Chicago.en_US
dc.identifier.citedreferencePolly, P. D. 2005. Development and phenotypic correlations: the evolution of tooth shape in Sorex araneus. Evol. Dev. 7: 29 – 41.en_US
dc.identifier.citedreferenceRohlf, F. J., and Slice, D. 1990. Extensions of the procrustes method for the optimal superimposition of landmarks. Syst. Zool. 39: 40 – 59.en_US
dc.identifier.citedreferenceSchlosser, G., and Wagner, G. P. 2004. Modularity in Development and Evolution. University of Chicago Press, Chicago.en_US
dc.identifier.citedreferenceSiegal, M. L., and Bergman, A. 2002. Waddington's canalization revisited: developmental stability and evolution. Proc. Natl. Acad. Sci. USA 99: 10528 – 10532.en_US
dc.identifier.citedreferenceSkerry, T. 2000. Biomechanical influences on skeletal growth and development. In P. O'Higgins and M. J. Cohn (eds.). Development, Growth and Evolution: Implications for the Study of the Hominid Skeleton. Academic Press, New York, pp. 29 – 39.en_US
dc.identifier.citedreferenceSteppan, S. J. 1997. Phylogenetic analysis of phenotypic covariance structure. 2. Reconstructing matrix evolution. Evolution 51: 587 – 594.en_US
dc.identifier.citedreferenceSun, Z., Lee, E., and Herring, S. W. 2004. Cranial sutures and bones: growth and fusion in relation to masticatory strain. Anatom. Rec. Part A 276A: 150 – 161.en_US
dc.identifier.citedreferenceWaddington, C. H. 1942. Canalization of development and the inheritance of acquired characters. Nature 150: 563 – 565.en_US
dc.identifier.citedreferenceWaddington, C. H. 1952. Canalization of the development of a quantitative character. In C. H. Waddington (ed.). Quantitative Inheritance. Her Majesty's Stationary Office, London, pp. 43 – 46.en_US
dc.identifier.citedreferenceZelditch, M. L. 1988. Ontogenetic variation in patterns of phenotypic integration in the laboratory rat. Evolution 42: 28 – 41.en_US
dc.identifier.citedreferenceZelditch, M. L. 2005. Developmental regulation of variability. In B. HallgrÍmsson and B. K. Hall (eds.). Variation: A Central Concept in Biology. Elsevier, London, pp. 249 – 276.en_US
dc.identifier.citedreferenceZelditch, M. L., and Carmichael, A. C. 1989. Ontogenetic variation in patterns of developmental and functional integration in skulls of Sigmodon fulviventer. Evolution 43: 1738 – 1747.en_US
dc.identifier.citedreferenceZelditch, M. L., Lundrigan, B. L., and Garland, T. 2004. Developmental regulation of skull morphology. I. Ontogenetic dynamics of variance. Evol. Dev. 6: 194 – 206.en_US
dc.identifier.citedreferenceZelditch, M. L., Lundrigan, B. L., Sheets, H. D., and Garland, T. Jr. 2003. Do precocial mammals develop at a faster rate? A comparison of rates of skull development in Sigmodon fulviventer and Mus musculus domesticus. J. Evol. Biol. 16: 708 – 720.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.