Developmental regulation of skull morphology II: ontogenetic dynamics of covariance
dc.contributor.author | Zelditch, Miriam Leah | en_US |
dc.contributor.author | Mezey, Jason | en_US |
dc.contributor.author | Sheets, H. David | en_US |
dc.contributor.author | Lundrigan, Barbara L. | en_US |
dc.contributor.author | Garland, Theodore | en_US |
dc.date.accessioned | 2010-06-01T18:15:42Z | |
dc.date.available | 2010-06-01T18:15:42Z | |
dc.date.issued | 2006-01 | en_US |
dc.identifier.citation | Zelditch, Miriam Leah; Mezey, Jason; Sheets, H . David; Lundrigan, Barbara L.; Garland, Theodore (2006). "Developmental regulation of skull morphology II: ontogenetic dynamics of covariance." Evolution & Development 8(1): 46-60. <http://hdl.handle.net/2027.42/71472> | en_US |
dc.identifier.issn | 1520-541X | en_US |
dc.identifier.issn | 1525-142X | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/71472 | |
dc.identifier.uri | http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=16409382&dopt=citation | en_US |
dc.description.abstract | Canalization may play a critical role in molding patterns of integration when variability is regulated by the balance between processes that generate and remove variation. Under these conditions, the interaction among those processes may produce a dynamic structure of integration even when the level of variability is constant. To determine whether the constancy of variance in skull shape throughout most of postnatal growth results from a balance between processes generating and removing variation, we compare covariance structures from age to age in two rodent species, cotton rats ( Sigmodon fulviventer ) and house mice ( Mus musculus domesticus ). We assess the overall similarity of covariance matrices by the matrix correlation, and compare the structures of covariance matrices using common subspace analysis, a method related to common principal components (PCs) analysis but suited to cases in which variation is so nearly spherical that PCs are ambiguous. We find significant differences from age to age in covariance structure and the more effectively canalized ones tend to be least stable in covariance structure. We find no evidence that canalization gradually and preferentially removes deviations arising early in development as we might expect if canalization results from compensatory differential growth. Our results suggest that (co)variation patterns are continually restructured by processes that equilibrate variance, and thus that canalization plays a critical role in molding patterns of integration. | en_US |
dc.format.extent | 856660 bytes | |
dc.format.extent | 3109 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | text/plain | |
dc.publisher | Blackwell Science Inc | en_US |
dc.rights | © 2006 BLACKWELL PUBLISHING, INC. | en_US |
dc.title | Developmental regulation of skull morphology II: ontogenetic dynamics of covariance | en_US |
dc.type | Article | en_US |
dc.subject.hlbsecondlevel | Ecology and Evolutionary Biology | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Museum of Paleontology, University of Michigan, Ann Arbor, MI 48109, USA | en_US |
dc.contributor.affiliationum | Michigan State University Museum and Department of Zoology, Michigan State University, East Lansing, MI 48824, USA | en_US |
dc.contributor.affiliationother | Center for Population Biology, University of California, Davis, CA 95616, USA | en_US |
dc.contributor.affiliationother | Department of Physics, Canisius College, Buffalo, NY 14208, USA | en_US |
dc.contributor.affiliationother | Department of Biology, University of California, Riverside, CA 92521, USA | en_US |
dc.identifier.pmid | 16409382 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/71472/1/j.1525-142X.2006.05074.x.pdf | |
dc.identifier.doi | 10.1111/j.1525-142X.2006.05074.x | en_US |
dc.identifier.source | Evolution & Development | en_US |
dc.identifier.citedreference | Anderson, T. W. 1963. Asymptotic theory for principal components. Ann. of Math. Stat. 34: 122 – 148. | en_US |
dc.identifier.citedreference | Atchley, W. R., Rutledge, J. J., and Cowley, D. C. 1981. Genetic components of size and shape. II. Multivariate covariance patterns in the rat and mouse skull. Evolution 35: 1037 – 1055. | en_US |
dc.identifier.citedreference | Bookstein, F. L., 1991. Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, Cambridge. | en_US |
dc.identifier.citedreference | Chamay, A., and Tchantz, P. 1972. Mechanical influences in bone remodeling. Experimental research on Wolff's Law. J. Biomech. 5: 173 – 180. | en_US |
dc.identifier.citedreference | Cheverud, J. M. 1982. Phenotypic, genetic and environmental integration in the cranium. Evolution 36: 499 – 512. | en_US |
dc.identifier.citedreference | Cheverud, J. M. 1984. Quantitative genetics and developmental constraints on evolution. J. Theor. Biol. 101: 155 – 171. | en_US |
dc.identifier.citedreference | Cheverud, J. M. 1995. Morphological integration in the saddle-back tamarin ( Saguinus fuscicollis ) cranium. Am. Nat. 145: 63 – 89. | en_US |
dc.identifier.citedreference | Cheverud, J. M. 1996. Developmental integration and the evolution of pleiotropy. Am. Zool. 36: 44 – 50. | en_US |
dc.identifier.citedreference | Cheverud, J. M., Wagner, G. P., and Dow, M. M. 1989. Methods for the comparative analysis of variation patterns. Syst. Zool. 38: 201 – 213. | en_US |
dc.identifier.citedreference | Debat, V., Alibert, P., David, P., Paradis, E., and Auffray, J. -C. 2000. Independence between developmental stability and canalization in the skull of the house mouse. Proc. R. Soc. London B 267: 423 – 430. | en_US |
dc.identifier.citedreference | Fitzgerald, J., and Hughes-Fulford, M. 1999. Mechanically induced c-fos expression is mediated by cAMP in MC3T3-E1 osteoblasts. FASEB J. 13: 553 – 557. | en_US |
dc.identifier.citedreference | Flury, B. 1987. Two generalizations of the common principal component model. Biometrika 74: 59 – 69. | en_US |
dc.identifier.citedreference | Flury, B. 1988. Common Principal Components and Related Multivariate Models. Wiley, New York. | en_US |
dc.identifier.citedreference | HallgrÍmsson, B., Willmore, K., Dorval, C., and Cooper, D. M. L. 2004. Craniofacial variability and modularity in macaques and mice. J. Exp. Zool. 302B: 207 – 225. | en_US |
dc.identifier.citedreference | Hatton, J. P., Pooran, M., Li, C. -F., Luzzio, C., and Hughes-Fulford, M. 2003. A short pulse of mechanical force induces gene expression and growth in MC3T3-E1 osteoblasts via an ERK 1/2 pathway. J. Bone Miner. Res. 18: 58 – 66. | en_US |
dc.identifier.citedreference | Kellner, J. R, and Alford, R. A. 2003. The ontogeny of fluctuating asymmetry. Am. Nat. 161: 931 – 947. | en_US |
dc.identifier.citedreference | Klingenberg, C. P., Barluenga, M., and Meyer, A. 2002. Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry. Evolution 56: 1909 – 1920. | en_US |
dc.identifier.citedreference | Klingenberg, C. P., Mebus, K., and Auffray, J. -C. 2003. Developmental integration in a complex morphological structure: how distinct are the modules in the mouse mandible? Evol. Dev. 5: 522 – 531. | en_US |
dc.identifier.citedreference | Krzanowski, W. J. 1979. Between-groups comparisons of principal components. J. Am. Stat. Assoc. 74: 703 – 701, Correction (1981) 76: 1022. | en_US |
dc.identifier.citedreference | Krzanowski, W. J. 1982. Between-groups comparisons of principal components—some sampling results. J. Stat. Comput. Simulation 15: 141 – 154. | en_US |
dc.identifier.citedreference | Lanyon, L. E. 1984. Functional strain as a determinant for bone remodeling. Calcified Tissues Int. 37: 119 – 124. | en_US |
dc.identifier.citedreference | Lieberman, D. E., and Pearson, O. M. 2001. Trade-off between modeling and remodeling responses to loading in the mammalian limb. Bull. Museum Comp. Zool. 156: 269 – 282. | en_US |
dc.identifier.citedreference | Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Res. 27: 209 – 220. | en_US |
dc.identifier.citedreference | Marquez, E. 2004. MACE: Matrix correlations for landmark data, ver. 1.1. Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA. | en_US |
dc.identifier.citedreference | Marroig, G., and Cheverud, J. M. 2001. A comparison of phenotypic variation and covariation patterns and the role of phylogeny, ecology and ontogeny during cranial evolution of New World monkeys. Evolution 55: 2576 – 2600. | en_US |
dc.identifier.citedreference | Mathworks. 2000. MATLAB. The Mathworks, Natick, MA. | en_US |
dc.identifier.citedreference | Olson, E. C., and Miller, R. L. 1958. Morphological Integration. University of Chicago Press, Chicago. | en_US |
dc.identifier.citedreference | Polly, P. D. 2005. Development and phenotypic correlations: the evolution of tooth shape in Sorex araneus. Evol. Dev. 7: 29 – 41. | en_US |
dc.identifier.citedreference | Rohlf, F. J., and Slice, D. 1990. Extensions of the procrustes method for the optimal superimposition of landmarks. Syst. Zool. 39: 40 – 59. | en_US |
dc.identifier.citedreference | Schlosser, G., and Wagner, G. P. 2004. Modularity in Development and Evolution. University of Chicago Press, Chicago. | en_US |
dc.identifier.citedreference | Siegal, M. L., and Bergman, A. 2002. Waddington's canalization revisited: developmental stability and evolution. Proc. Natl. Acad. Sci. USA 99: 10528 – 10532. | en_US |
dc.identifier.citedreference | Skerry, T. 2000. Biomechanical influences on skeletal growth and development. In P. O'Higgins and M. J. Cohn (eds.). Development, Growth and Evolution: Implications for the Study of the Hominid Skeleton. Academic Press, New York, pp. 29 – 39. | en_US |
dc.identifier.citedreference | Steppan, S. J. 1997. Phylogenetic analysis of phenotypic covariance structure. 2. Reconstructing matrix evolution. Evolution 51: 587 – 594. | en_US |
dc.identifier.citedreference | Sun, Z., Lee, E., and Herring, S. W. 2004. Cranial sutures and bones: growth and fusion in relation to masticatory strain. Anatom. Rec. Part A 276A: 150 – 161. | en_US |
dc.identifier.citedreference | Waddington, C. H. 1942. Canalization of development and the inheritance of acquired characters. Nature 150: 563 – 565. | en_US |
dc.identifier.citedreference | Waddington, C. H. 1952. Canalization of the development of a quantitative character. In C. H. Waddington (ed.). Quantitative Inheritance. Her Majesty's Stationary Office, London, pp. 43 – 46. | en_US |
dc.identifier.citedreference | Zelditch, M. L. 1988. Ontogenetic variation in patterns of phenotypic integration in the laboratory rat. Evolution 42: 28 – 41. | en_US |
dc.identifier.citedreference | Zelditch, M. L. 2005. Developmental regulation of variability. In B. HallgrÍmsson and B. K. Hall (eds.). Variation: A Central Concept in Biology. Elsevier, London, pp. 249 – 276. | en_US |
dc.identifier.citedreference | Zelditch, M. L., and Carmichael, A. C. 1989. Ontogenetic variation in patterns of developmental and functional integration in skulls of Sigmodon fulviventer. Evolution 43: 1738 – 1747. | en_US |
dc.identifier.citedreference | Zelditch, M. L., Lundrigan, B. L., and Garland, T. 2004. Developmental regulation of skull morphology. I. Ontogenetic dynamics of variance. Evol. Dev. 6: 194 – 206. | en_US |
dc.identifier.citedreference | Zelditch, M. L., Lundrigan, B. L., Sheets, H. D., and Garland, T. Jr. 2003. Do precocial mammals develop at a faster rate? A comparison of rates of skull development in Sigmodon fulviventer and Mus musculus domesticus. J. Evol. Biol. 16: 708 – 720. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.