Show simple item record

Dopaminergic regulation of orexin neurons

dc.contributor.authorBubser, Michaelen_US
dc.contributor.authorFadel, Jim R.en_US
dc.contributor.authorJackson, Lela L.en_US
dc.contributor.authorMeador-Woodruff, James H.en_US
dc.contributor.authorJing, Deqiangen_US
dc.contributor.authorDeutch, Ariel Y.en_US
dc.date.accessioned2010-06-01T18:18:11Z
dc.date.available2010-06-01T18:18:11Z
dc.date.issued2005-06en_US
dc.identifier.citationBubser, Michael; Fadel, Jim R.; Jackson, Lela L.; Meador-Woodruff, James H.; Jing, Deqiang; Deutch, Ariel Y. (2005). "Dopaminergic regulation of orexin neurons." European Journal of Neuroscience 21(11): 2993-3001. <http://hdl.handle.net/2027.42/71513>en_US
dc.identifier.issn0953-816Xen_US
dc.identifier.issn1460-9568en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71513
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15978010&dopt=citationen_US
dc.description.abstractOrexin/hypocretin neurons in the lateral hypothalamus and adjacent perifornical area (LH/PFA) innervate midbrain dopamine (DA) neurons that project to corticolimbic sites and subserve psychostimulant-induced locomotor activity. However, it is not known whether dopamine neurons in turn regulate the activity of orexin cells. We examined the ability of dopamine agonists to activate orexin neurons in the rat, as reflected by induction of Fos. The mixed dopamine agonist apomorphine increased Fos expression in orexin cells, with a greater effect on orexin neurons located medial to the fornix. Both the selective D1-like agonist, A-77636, and the D2-like agonist, quinpirole, also induced Fos in orexin cells, suggesting that stimulation of either receptor subtype is sufficient to activate orexin neurons. Consistent with this finding, combined SCH 23390 (D1 antagonist)–haloperidol (D2 antagonist) pretreatment blocked apomorphine-induced activation of medial as well as lateral orexin neurons; in contrast, pretreatment with either the D1-like or D2-like antagonists alone did not attenuate apomorphine-induced activation of medial orexin cells. In situ hybridization histochemistry revealed that LH/PFA cells rarely express mRNAs encoding dopamine receptors, suggesting that orexin cells are transsynaptically activated by apomorphine. We therefore lesioned the nucleus accumbens, a site known to regulate orexin cells, but this treatment did not alter apomorphine-elicited activation of medial or lateral orexin neurons. Interestingly, apomorphine failed to activate orexin cells in isoflurane-anaesthetized animals. These data suggest that apomorphine-induced arousal but not accumbens-mediated hyperactivity is required for dopamine to transsynaptically activate orexin neurons.en_US
dc.format.extent387398 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2005 Federation of European Neuroscience Societiesen_US
dc.subject.otherApomorphineen_US
dc.subject.otherFosen_US
dc.subject.otherLateral Hypothalamusen_US
dc.subject.otherNucleus Accumbensen_US
dc.subject.otherRaten_US
dc.titleDopaminergic regulation of orexin neuronsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Psychiatry and Mental Health Research Institute, University of Michigan Medical School, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherDepartment of Psychiatry, Vanderbilt University Medical Center, Nashville, TN 37212, USAen_US
dc.contributor.affiliationotherDepartment of Pharmacology, Vanderbilt University Medical Center, Nashville, USAen_US
dc.contributor.affiliationotherDepartment of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SCen_US
dc.identifier.pmid15978010en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71513/1/j.1460-9568.2005.04121.x.pdf
dc.identifier.doi10.1111/j.1460-9568.2005.04121.xen_US
dc.identifier.sourceEuropean Journal of Neuroscienceen_US
dc.identifier.citedreferenceAkiyama, M., Yuasa, T., Hayasaka, N., Horikawa, K., Sakurai, T. & Shibata, S. ( 2004 ) Reduced food anticipatory activity in genetically orexin (hypocretin) neuron-ablated mice. Eur. J. Neurosci., 20, 3054 – 3062.en_US
dc.identifier.citedreferenceAsper, H., Baggioline, M., BÜrki, H. R., Lauener, H., Ruch, W. & Stille, G. ( 1973 ) Tolerance phenomena with neuroleptics catalepsy, apomorphine stereotypies and striatal dopamine metabolism in the rat after single and repeated administration of loxapine and haloperidol. Eur. J. Pharmacol., 22, 287 – 294.en_US
dc.identifier.citedreferenceBaldo, B. A., Daniel, R. A., Berridge, C. W. & Kelley, A. E. ( 2003 ) Overlapping distributions of orexin/hypocretin- and dopamine-beta-hydroxylase immunoreactive fibers in rat brain regions mediating arousal, motivation, and stress. J. Comp. Neurol., 464, 220 – 237.en_US
dc.identifier.citedreferenceBaldo, B. A., Gual-Bonilla, L., Sijapati, K., Danie1, R. A., Landry, C. F. & Kelley, A. E. ( 2004 ) Activation of a subpopulation of orexin/hypocretin-containing hypothalamic neurons by GABA A receptor-mediated inhibition of the nucleus accumbens shell, but not by exposure to a novel environment. Eur. J. Neurosci., 19, 376 – 386.en_US
dc.identifier.citedreferenceBouret, S. G., Draper, S. J. & Simerly, R. B. ( 2004 ) Formation of projection pathways from the arcuate nucleusof the hypothalamus to hypothalamic regions implicated in the neural control of feeding behavior in mice. J. Neurosci., 24, 2797 – 2805.en_US
dc.identifier.citedreferenceBroberger, C., De Lecea, L., Sutcliffe, J. G. & Hokfelt, T. ( 1998 ) Hypocretin/orexin- and melanin-concentrating hormone-expressing cells form distinct populations in the rodent lateral hypothalamus: relationship to the neuropeptide Y and agouti gene-related protein systems. J. Comp. Neurol., 402, 460 – 474.en_US
dc.identifier.citedreferenceBrunetti, L., Orlando, G., Recinella, L., Michelotto, B., Ferrante, C. & Vacca, M. ( 2004 ) Resistin, but not adiponectin, inhibits dopamine and norepinephrine release in the hypothalamus. Eur. J. Pharmacol., 493, 41 – 44.en_US
dc.identifier.citedreferenceBubser, M. & Deutch, A. Y. ( 1998 ) Thalamic paraventricular nucleus neurons collateralize to innervate the prefrontal cortex and nucleus accumbens. Brain Res., 787, 304 – 310.en_US
dc.identifier.citedreferenceCarr, K. D., Kim, G. Y. & Cabeza de Vaca, S. ( 2001 ) Rewarding and locomotor-activating effects of direct dopamine receptor agonists are augmented by chronic food restriction in rats. Psychopharmacology, 154, 420 – 428.en_US
dc.identifier.citedreferenceDamask, S. P., Bovenkerk, K. A., De la Pena, G., Hoversten, K. M., Peters, D. B., Valentine, A. M. & Meador-Woodruff, J. H. ( 1996 ) Differential effects of clozapine and haloperidol on dopamine receptor mRNA expression in rat striatum and cortex. Mol. Brain Res., 41, 241 – 249.en_US
dc.identifier.citedreferenceEspana, R. A., Baldo, B. A., Kelley, A. E. & Berridge, C. W. ( 2001 ) Wake-promoting and sleep-suppressing actions of hypocretin (orexin): basal forebrain sites of action. Neuroscience, 106, 699 – 715.en_US
dc.identifier.citedreferenceEspana, R. A., Valentino, R. J. & Berridge, C. W. ( 2003 ) Fos immunoreactivity in hypocretin-synthesizing and hypocretin-1 receptor-expressing neurons: effects of diurnal and nocturnal spontaneous waking, stress and hypocretin-1 administration. Neuroscience, 121, 201 – 217.en_US
dc.identifier.citedreferenceEstabrooke, I. V., McCarthy, M. T., Ko, E., Chou. T. C., Chemelli, R. M., Yanagisawa, M., Saper, C. B. & Scammell, T. E. ( 2001 ) Fos expression in orexin neurons varies with behavioral state. J. Neurosci., 21, 1656 – 1662.en_US
dc.identifier.citedreferenceFadel, J., Bubser, M. & Deutch, A. Y. ( 2002 ) Differential activation of orexin neurons by antipsychotic drugs associated with weight gain. J. Neurosci., 22, 6742 – 6746.en_US
dc.identifier.citedreferenceFadel, J. & Deutch, A. Y. ( 2002 ) Anatomical substrates of orexin–dopamine interactions: lateral hypothalamic projections to the ventral tegmental area. Neuroscience, 111, 379 – 387.en_US
dc.identifier.citedreferenceFetissov, S. O., Meguid, M. M., Sato, T. & Zhang, L. H. ( 2002 ) Expression of dopaminergic receptors in the hypothalamus of lean and obese Zucker rats and food intake. Am. J. Physiol. Regul. Integr. Comp. Physiol., 283, R905 – R910.en_US
dc.identifier.citedreferenceFujiki, N., Yoshida, Y., Ripley, B., Honda, K., Mignot, E. & Nishino, S. ( 2001 ) Changes in CSF hypocretin-1 (orexin A) levels in rats across 24 hours and in response to food deprivation. Neuroreport, 12, 993 – 997.en_US
dc.identifier.citedreferenceHagan, J. J., Leslie, R. A., Patel, S., Evans, M. L., Wattam, T. A., Holmes, S., Benham, C. D., Taylor, S. G., Routledge, C., Hemmati, P., Munton, R. P., Ashmeade, T. E., Shah, A. S., Hatcher, J. P., Hatcher, P. D., Jones, D. N., Smith, M. I., Piper, D. C., Hunter, A. J., Porter, R. A. & Upton, N. ( 1999 ) Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc. Natl Acad. Sci. USA, 96, 10911 – 10916.en_US
dc.identifier.citedreferenceHorvath, T. L., Peyron, C., Diano, S., Ivanov, A., Aston-Jones, G., Kilduff, T. S. & van Den Pol, A. N. ( 1999 ) Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. J. Comp. Neurol., 415, 145 – 159.en_US
dc.identifier.citedreferenceIsaac, S. O. & Berridge, C. W. ( 2003 ) Wake-promoting actions of dopamine D1 and D2 receptor stimulation. J. Pharmacol. Exp. Ther., 307, 386 – 394.en_US
dc.identifier.citedreferenceKafetzopoulos, E. ( 1986 ) Effects of amphetamine and apomorphine on locomotor activity after kainic acid lesion of the nucleus accumbens septi in the rat. Psychopharmacology, 88, 271 – 274.en_US
dc.identifier.citedreferenceKlemm, N., Murrin, L. C. & Kuhar, M. J. ( 1979 ) Neuroleptic and dopamine receptors: autoradiographic localization of [3H]spiperone in rat brain. Brain Res., 169, 1 – 9.en_US
dc.identifier.citedreferenceKÖhler, C., Haglund, L., Ögren, S. -O. & Ängeby, T. ( 1981 ) Regional blockade by neuroleptic drugs of in vivo 3H-spiperone binding in the rat brain. Relation to blockade of apomorphine induced hyperactivity and stereotypies. J. Neural Transm., 52, 163 – 173.en_US
dc.identifier.citedreferenceKorotkova, T. M., Sergeeva, O. A., Eriksson, K. S., Haas, H. L. & Brown, R. E. ( 2003 ) Excitation of ventral tegmental area dopaminergic and nondopaminergic neurons by orexins/hypocretins. J. Neurosci., 23, 7 – 11.en_US
dc.identifier.citedreferenceKropf, W., Kuschinsky, K. & Krieglstein, J. ( 1989 ) Apomorphine-induced alterations in cortical EEG activity of rats. Involvement of D-1 and D-2 dopamine receptors. Naunyn-Schmiedeberg's Arch. Pharmacol., 340, 718 – 725.en_US
dc.identifier.citedreferencede Lecea, L., Kilduff, T. S., Peyron, C., Gao, X., Foye, P. E., Danielson, P. E., Fukuhara, C., Battenberg, E. L., Gautvik, V. T., Bartlett, F. S., Frankel, W. N., van den Pol, A. N., Bloom, F. E., Gautvik, K. M. & Sutcliffe, J. G. ( 1998 ) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl Acad. Sci. USA, 95, 322 – 327.en_US
dc.identifier.citedreferenceLee, S. K. & Hollenbeck, P. J. ( 2003 ) Organization and translation of mRNA in sympathetic axons. J. Cell Sci., 116, 4467 – 4478.en_US
dc.identifier.citedreferenceLee, T. L., Hsu, C. T., Yen, S. T., Lai, C. W. & Cheng, J. T. ( 1998 ) Activation of beta3-adrenoceptors by exogenous dopamine to lower glucose uptake into rat adipocytes. J. Auton. Nerv. Syst., 74, 86 – 90.en_US
dc.identifier.citedreferenceLeibowitz, S. F., Jhanwar-Uniyal, M., Dvorkin, B. & Makman, M. H. ( 1982 ) Distribution of alpha-adrenergic, beta-adrenergic and dopaminergic receptors in discrete hypothalamic areas of rat. Brain Res., 233, 97 – 114.en_US
dc.identifier.citedreferenceLi, Y. & van den Pol, A. N. ( 2005 ) Direct and indirect inhibition by catecholamines of hypocretin/orexin neurons. J. Neurosci., 25, 173 – 183.en_US
dc.identifier.citedreferenceLu, X. Y., Bagnol, D., Burke, S., Akil, H. & Watson, S. J. ( 2000 ) Differential distribution and regulation of OX1 and OX2 orexin/hypocretin receptor messenger RNA in the brain upon fasting. Horm. Behav., 37, 335 – 344.en_US
dc.identifier.citedreferenceMansour, A., Meador-Woodruff, J. H., Bunzow, J. R., Civelli, O., Akil, H. & Watson, S. J. ( 1990 ) Localization of dopamine D2 receptor mRNA and D1 and D2 receptor binding in the rat brain and pituitary: an in situ hybridization-receptor autoradiographic analysis. J. Neurosci., 10, 2587 – 2600.en_US
dc.identifier.citedreferenceMansour, A., Meador-Woodruff, J. H., Zhou, Q. Y., Civelli, O., Akil, H. & Watson, S. J. ( 1991 ) A comparison of D1 receptor binding and mRNA in rat brain using receptor autoradiographic and in situ hybridization techniques. Neuroscience, 45, 359 – 371.en_US
dc.identifier.citedreferenceMarcus, J. N., Aschkenasi, C. J., Lee, C. E., Chemelli, R. M., Saper, C. B., Yanagisawa, M. & Elmquist, J. K. ( 2001 ) Differential expression of orexin receptors 1 and 2 in the rat brain. J. Comp. Neurol., 435, 6 – 25.en_US
dc.identifier.citedreferenceMeister, B. ( 2000 ) Control of food intake via leptin receptors in the hypothalamus. Vitam. Horm., 59, 265 – 304.en_US
dc.identifier.citedreferenceMeller, E., Bohmaker, K., Goldstein, M. & Friedhoff, A. J. ( 1985 ) Inactivation of D1 and D2 dopamine receptors by N -ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline in vivo: selective protection by neuroleptics. J. Pharmacol. Exp. Ther., 233, 656 – 662.en_US
dc.identifier.citedreferenceMillan, M. J., Maiofiss, L., Cussac, D., Audinot, V., Boutin, J. A. & Newman-Tancredi, A. ( 2002 ) Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. I. A multivariate analysis of the binding profiles of 14 drugs at 21 native and cloned human receptor subtypes. J. Pharmacol. Exp. Ther., 303, 791 – 804.en_US
dc.identifier.citedreferenceMurphy, J. A., Deurveilher, S. & Semba, K. ( 2003 ) Stimulant doses of caffeine induce c-FOS activation in orexin/hypocretin-containing neurons in rat. Neuroscience, 121, 269 – 275.en_US
dc.identifier.citedreferenceNakamura, T., Uramura, K., Nambu, T., Yada, T., Goto, K., Yanagisawa, M. & Sakurai, T. ( 2000 ) Orexin-induced hyperlocomotion and stereotypy are mediated by the dopaminergic system. Brain Res., 873, 181 – 187.en_US
dc.identifier.citedreferenceNakano, S., Hara, C. & Ogawa, N. ( 1980 ) Circadian rhythm of apomorphine-induced stereotypy in rats. Pharmacol. Biochem. Behav., 12, 459 – 461.en_US
dc.identifier.citedreferenceNasello, A. G., Tieppo, C. A. & Felicio, L. F. ( 1995 ) Apomorphine-induced yawning in the rat: influence of fasting and time of day. Physiol. Behav., 57, 967 – 971.en_US
dc.identifier.citedreferenceNisoli, E., Tonello, C., Memorandum, M. & Carruba, M. O. ( 1992 ) Biochemical and functional identification of a novel dopamine receptor subtype in rat brown adipose tissue. Its role in modulating sympathetic stimulation-induced thermogenesis. J. Pharmacol. Exp. Ther., 263, 823 – 829.en_US
dc.identifier.citedreferenceOlszewski, P. K., Li, D., Grace, M. K., Billington, C. J., Kotz, C. M. & Levine, A. S. ( 2003 ) Neural basis of orexigenic effects of ghrelin acting within lateral hypothalamus. Peptides, 24, 597 – 602.en_US
dc.identifier.citedreferencePaxinos, G. & Watson, C. ( 1986 ) The Rat Brain in Stereotaxic Coordinates. Academic Press, San Diego, CA.en_US
dc.identifier.citedreferencePeyron, C., Tighe, D. K., van den Pol, A. N., de Lecea, L., Heller, H. C., Sutcliffe, J. G. & Kilduff, T. S. ( 1998 ) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci., 18, 9996 – 10015.en_US
dc.identifier.citedreferenceRitter, L. M. & Meador-Woodruff, J. H. ( 1997 ) Antipsychotic regulation of hippocampal dopamine receptor messenger RNA expression. Biol. Psychiatry, 42, 155 – 164.en_US
dc.identifier.citedreferenceSakurai, T., Amemiya, A., Ishii, M., Matsuzaki, I., Chemelli, R. M., Tanaka, H., Williams, S. C., Richardson, J. A., Kozlowski, G. P., Wilson, S., Arch., J. R., Buckingham, R. E., Haynes, A. C., Carr, S. A., Annan, R. S., McNulty, D. E., Liu, W. S., Terrett, J. A., Elshourbagy, N. A., Bergsma, D. J. & Yanagisawa, M. ( 1998 ) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell, 92, 573 – 585.en_US
dc.identifier.citedreferenceSaller, C. F., Kreamer, L. D., Adamovage, L. A. & Salama, A. I. ( 1989 ) Dopamine receptor occupancy in vivo: measurement using N -ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ). Life Sci., 45, 917 – 929.en_US
dc.identifier.citedreferenceSatoh, S., Matsumura, H., Nakajima, T., Nakahama, K., Kanbayashi, T., Nishino, S., Yoneda, H. & Shigeyoshi, Y. ( 2003 ) Inhibition of rostral basal forebrain neurons promotes wakefulness and induces FOS in orexin neurons. Eur. J. Neurosci., 17, 1635 – 1645.en_US
dc.identifier.citedreferenceSavasta, M., Dubois, A. & Scatton, B. ( 1986 ) Autoradiographic localization of D1 dopamine receptors in the rat brain with [3H]SCH 23390. Brain Res., 375, 291 – 301.en_US
dc.identifier.citedreferenceScammell, T. E., Estabrooke, I. V., McCarthy, M. T., Chemelli, R. M., Yanagisawa, M., Miller, M. S. & Saper, C. B. ( 2000 ) Hypothalamic arousal regions are activated during modafinil-induced wakefulness. J. Neurosci., 20, 8620 – 8628.en_US
dc.identifier.citedreferenceSteward, O. & Schuman. E. M. ( 2001 ) Protein synthesis at synaptic sites on dendrites. Annu. Rev. Neurosci., 24, 299 – 325.en_US
dc.identifier.citedreferenceStratford, T. R. & Kelley, A. E. ( 1999 ) Evidence of a functional relationship between the nucleus accumbens shell and lateral hypothalamus subserving the control of feeding behavior. J. Neurosci., 19, 11040 – 11048.en_US
dc.identifier.citedreferenceUramura, K., Funahashi, H., Muroya, S., Shioda, S., Takigawa, M. & Yada, T. ( 2001 ) Orexin-a activates phospholipase C- and protein kinase C-mediated Ca 2+ signaling in dopamine neurons of the ventral tegmental area. Neuroreport, 12, 1885 – 1889.en_US
dc.identifier.citedreferenceUsuda, I., Tanaka, K. & Chiba, T. ( 1998 ) Efferent projections of the nucleus accumbens in the rat with special reference to subdivision of the nucleus: biotinylated dextran amine study. Brain Res., 797, 73 – 93.en_US
dc.identifier.citedreferenceWeissenborn, R. & Winn, P. ( 1992 ) Regulatory behavior, exploration and locomotion following NMDA or 6-OHDA lesions in the rat nucleus accumbens. Behav. Brain Res., 51, 127 – 137.en_US
dc.identifier.citedreferenceWinsky-Sommerer, R., Boutrel, B. & de Lecea, L. ( 2003 ) The role of the hypocretinergic system in the integration of networks that dictate the states of arousal. Drug News Perspect., 16, 504 – 512.en_US
dc.identifier.citedreferenceWisor, J. P., Nishino, S., Sora, I., Uhl, G. H., Mignot, E. & Edgar, D. M. ( 2001 ) Dopaminergic role in stimulant-induced wakefulness. J. Neurosci., 21, 1787 – 1794.en_US
dc.identifier.citedreferenceWolf, H. K., Buslei, R., Schmidt-Kastner, R., Schmidt-Kastner, P. K., Pietsch, T., Wiestler, O. D. & Blumcke, I. ( 1996 ) NeuN: a useful neuronal marker for diagnostic histopathology. J. Histochem. Cytochem., 44, 1167 – 1171.en_US
dc.identifier.citedreferenceZahm, D. S. & Heimer, L. ( 1993 ) Specificity in the efferent projections of the nucleus accumbens in the rat: comparison of the rostral pole projection patterns with those of the core and shell. J. Comp. Neurol., 327, 220 – 232.en_US
dc.identifier.citedreferenceZeitzer, J. M., Buckmaster, C. L., Lyons, D. M. & Mignot, E. ( 2004 ) Locomotor-dependent and -independent components to hypocretin-1 (orexin A) regulation in sleep-wake consolidating monkeys. J. Physiol. (Lond. ), 557, 1045 – 1053.en_US
dc.identifier.citedreferenceZhang, W., Klimek, V., Farley, J. T., Zhu, M. Y. & Ordway, G. A. ( 1999 ) Alpha2C adrenoceptors inhibit adenylyl cyclase in mouse striatum: potential activation by dopamine. J. Pharmacol. Exp. Ther., 289, 1286 – 1292.en_US
dc.identifier.citedreferenceZheng, H., Corkern, M., Stoyanova, I., Patterson, L. M., Tian, R. & Berthoud, H. R. ( 2003 ) Peptides that regulate food intake: appetite-inducing accumbens manipulation activates hypothalamic orexin neurons and inhibits POMC neurons. Am. J. Physiol. Regul. Integr. Comp. Physiol., 284, R1436 – R1444.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.