Show simple item record

Differential regulation of IL-1 and IL-1 receptor antagonist in HaCaT keratinocytes by tumor necrosis factor-Α and transforming growth factor-Β1

dc.contributor.authorKang, Kefeien_US
dc.contributor.authorHammerberg, Craigen_US
dc.contributor.authorCooper, Kevin D.en_US
dc.date.accessioned2010-06-01T18:19:00Z
dc.date.available2010-06-01T18:19:00Z
dc.date.issued1996-08en_US
dc.identifier.citationKang, Kefei; Hammerberg, Craig; Cooper, Kevin D. (1996). "Differential regulation of IL-1 and IL-1 receptor antagonist in HaCaT keratinocytes by tumor necrosis factor-Α and transforming growth factor-Β1." Experimental Dermatology 5(4): 218-226. <http://hdl.handle.net/2027.42/71526>en_US
dc.identifier.issn0906-6705en_US
dc.identifier.issn1600-0625en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71526
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=8889469&dopt=citationen_US
dc.description.abstract: Cytokines such as TNFΑ and TGFΒ1 have potent effects on keratinocyte differentiation and have been implicated in cutaneous injury, immunologic reactions, and wound healing. To determine whether such conditions might alter the balance of epidermal keratinocyte IL-1 and the IL-1 receptor antagonist (IL-1ra), TNFΑ and TGFΒ1 were added to HaCaT cells, a human adult keratinocyte cell line. mRNA levels of IL-1Α, IL-1Β, and IL-IRa were detected by polymerase chain reaction (PCR) on reverse transcribed RNA extracts, followed by Southern blot of the PCR products, 35 S-labeled probe hybridization, and quantification against standard curves. TNFΑ (100 ng/ml) at the 3-h time point significantly induced increases in mRNA expression of IliΑ (9.2±2.9 fold increase) and IL-1Β (2.5±0.7 fold increase) ( n =7) which were concordant with increases in IL-1Α protein (7.1±1.3 fold increase) and II-Β protein (4.4±1.0 fold increase) measured by ELISA 24 h after stimulation. By contrast, icIL-IRa mRNA and protein levels were not affected by TNFΑ. TGFΒl induced a mild increase in IL-lΑ mRNA (3.8±1.8 fold) and protein (3.5±1.2 fold). TGFΒl did not affect IL-1Α mRNA levels but caused variable increases in IL-1Β protein levels. TGFΒ1 did not alter icIL-1Ra mRNA or protein levels. Inhibition of RNA synthesis with actinomycin D demonstrated that the rate of degradation of IL-1Β mRNA was reduced by treatment with TNFΑ. This stabilization of IL-1Β mRNA was specific, because TGFP I did not stabilize IL-1Β mRNA, and TGFΒ1 and TNFΑ did not increase the stability of II-1Α mRNA. icIL-l Ra mRNA was fairly stable over a 20 hour period and its slow degradation was not affected by treatment with either TNFΑ or TGFΒ1, indicating a higher steady state stability of icIL-1ra mRNA relative to IL-1 mRNA's. Given the high rate of degradation of IL-1Α and IL-1Β mRNA, levels of these mRNAs may rapidly decrease while the icIL-1ra mRNA levels remain constant, thus allowing for rapid dampening of IL-1 activity soon after the stimuli provoking an inflammatory or reparative response have abated. In conclusion, TNFΑ and TGFΒl, cytokines with potent effects on inflammation and differentiation, both induce keratinocyte IL-1Α mRNA and protein levels, but differentially regulate IL-1Β mRNA. They both exert little effect on IL-1 Ra levels, which were constitutively highly stable. Such differential regulation provides mechanisms for separately controlling the relative activity of these cytokines under normal and disordered conditions.en_US
dc.format.extent8283139 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsMunksgaard 1996en_US
dc.titleDifferential regulation of IL-1 and IL-1 receptor antagonist in HaCaT keratinocytes by tumor necrosis factor-Α and transforming growth factor-Β1en_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelDentistryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartments of Dermatology, University of Michigan and Case Western Reserve University, Ann Arbor, MI, and Cleveland, OH, USAen_US
dc.contributor.affiliationotherVeterans Affairs Hospitals, Ann Arbor, MI, and Cleveland, OH, USAen_US
dc.identifier.pmid8889469en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71526/1/j.1600-0625.1996.tb00120.x.pdf
dc.identifier.doi10.1111/j.1600-0625.1996.tb00120.xen_US
dc.identifier.sourceExperimental Dermatologyen_US
dc.identifier.citedreferenceSauder D N, Carter C S, Katz S I, Oppenheim J J. Epidermal cell production of thymocyte activating factor (ETAF). J Invest Dermatol 1982: 79: 34 – 39.en_US
dc.identifier.citedreferenceLuger T A, Charon J A, Colot M, Micksche M, Oppenheim J J. Chemotactic properties of partially purified human epidermal cellderived thymocyte-activating factor (ETAF) for polymorphonuclear and mononuclear cells. J Immunol. 1983: 131: 816 – 820.en_US
dc.identifier.citedreferenceKupper T S, Ballard D W, Chua A O et al. Human keratinocytes contain mRNA indistinguishable from monocyte interleukin 1 alpha and beta mRNA. J Exp Med 1986: 164: 2095 – 2100.en_US
dc.identifier.citedreferenceHauser C, Saurat J-H, Schmitt J A, Jaunin F, Dayer J H. Interleukin-1 is present in normal human epidermis. J Immunol 1986: 136: 3317 – 3322.en_US
dc.identifier.citedreferenceCooper K D, Hammerberg C, Baadsgaard O et al. IL-1 activity is reduced in psoriatic skin: decreased IL-1 Α and increased nonfunctional IL-1 Β. J Immunol 1990: 144: 4593 – 4603.en_US
dc.identifier.citedreferenceDinarello C A. Interleukin-1 and interleukin-1 antagonism. Blood 1991: 77: 1627 – 1652.en_US
dc.identifier.citedreferenceHaskill S, Martin G, Van Le L et al. cDNA cloning of an intracellular form of the human interleukin-1 receptor antagonist associated with epithelium. Proc Natl Acad Sci USA 1991: 88: 3681 – 3685.en_US
dc.identifier.citedreferenceCarter D B, Deibel M R J, Dunn C J et al. Purification, cloning, expression and biological characterization of an interleukin-1 receptor antagonist protein. Nature 1990: 344: 633 – 638.en_US
dc.identifier.citedreferenceBigler C F, Norris D A, Weston W L, Arend W P. Interleukin-1 receptor antagonist production by human keratinocytes. J Invest Dermatol 1992: 98: 38 – 44.en_US
dc.identifier.citedreferenceHammerberg C, Arend W P, Fisher G J et al. Interleukin-1 receptor antagonist in normal and psoriatic epidermis. J Clin Invest 1992: 90: 571 – 583.en_US
dc.identifier.citedreferenceArai K I, Lee F, Miyajima A, Miyatake S, Arai N, Yokota T. Cytokines: coordinators of immune and inflammatory responses. Annu Rev Biochem 1990: 59: 783 – 836.en_US
dc.identifier.citedreferenceKutsch C L, Norris D A, Arend W P. Tumor necrosis factor-alpha induces interleukin-1 alpha and interleukin-1 receptor antagonist production by cultured human keratinocytes. J Inves Dermatol 1993: 101: 79 – 85.en_US
dc.identifier.citedreferencePiguet P F. Keratinocyte-derived tumor necrosis factor and the physiopathology of the skin. Springer Semin Immunopathol 1992: 13: 345 – 354.en_US
dc.identifier.citedreferencePiguet P F, Grau G E, Hauser C, Vassalli P. Tumor necrosis factor is a critical mediator in hapten-induced irritant and contact hypersensitivity reactions. J Exp Med 1991: 173: 673 – 679.en_US
dc.identifier.citedreferenceKock A, Schwarz T, Kimbauer R et al. Human keratinocytes are a source for tumor necrosis factor Α: evidence for synthesis and release upon stimulation with endotoxin or ultraviolet light. J Exp Med 1990: 172: 1609 – 1614.en_US
dc.identifier.citedreferenceWalsh L J, Trinehieri G, Waldorf H A, Whitaker D, Murphy G F. Human dermal mast cells contain and release tumor necrosis factor Α, which induces endothelial leukocyte adhesion molecule I. Proc Natl Acad Sci USA. 1991: 88: 4220 – 4224.en_US
dc.identifier.citedreferenceNickoloff B J, Karabin G D, Barker J N W N et al. Cellular localization of interleukin-8 and its inducer. tumor necrosis factor-alpha in psoriasis. Am J Pathol 1991: 138: 129 – 140.en_US
dc.identifier.citedreferenceAnsel J, Perry P, Brown J et al. Cytokine modulation of keratinocyte cytokines. J Invest Dermatol 1990: 94: 101S – 107S.en_US
dc.identifier.citedreferencePartridge M, Chantry D, Turner M, Feldmann M. Production of interleukin-1 and interleukin-6 by hum an keratinocytes and squamous cell carcinoma cell lines. J Invest Dermatol 1991: 96: 771 – 776.en_US
dc.identifier.citedreferenceWahl S M. Transforming growth factor Β (TGF-Β) in inflammation: a cause and a cure. J Clin Immunol 1992: 12: 61 – 74.en_US
dc.identifier.citedreferenceShull M M, Ormsby I, Kier A B et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 1992: 359: 693 – 699.en_US
dc.identifier.citedreferenceMansbridge J N, Hanawalt P C. Role of transforming growth factor beta in the maturation of human epidermal keratinocytes, J Invest Dermatol 1988: 90: 336 – 341.en_US
dc.identifier.citedreferenceMustoe T A, Pierce G F, Thomason A, Granutes P, Sporn M B, Deuel T F. Accelerated healing of incisional wounds in rats induced by transforming growth factor-beta. Science. 1987: 237: 1333 – 1336.en_US
dc.identifier.citedreferenceKane C J M, Knapp A M, Mansbridge J N, Hanawalt P C. Transforming growth factor-beta I localization in normal and psoriatic epidermal keratinocytes in situ. J Cell Physiol. 1990: 144: 144 – 150.en_US
dc.identifier.citedreferenceKulkarni A B, Karlsson S. Transforming growth factor-Β 1 knockout mice. A mutation in one cytokine gene causes a dramatic inflammatory disease. Am J Pathol 1993: 143: 3 – 9.en_US
dc.identifier.citedreferenceChantry D, Turner M, Abney E, Feldmann M. Modulation of cytokine production by transforming growth factor-Β. J Immunol 1989: 142: 4295 – 4300.en_US
dc.identifier.citedreferenceTurner M, Chantry D, Katsikis P, Berger A, Brennan F M, Feldmann M. Induction of the interleukin 1 receptor antagonist protein by transforming growth factor-Β. Eur J Immunol 1991: 21: 1635 – 1639.en_US
dc.identifier.citedreferenceBoukamp P, Petrussevska R T, Breilkreutz, D, Hornung J, Markham A, Fuscnig N E. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 1988: 106: 761 – 771.en_US
dc.identifier.citedreferenceKang K, Hammerberg C, Meunier L, Cooper K D. CD11b+ macrophages that infiltrate human epidermis after in vivo ultraviolet exposure potently produce IL-10 and represent the major secretory source of epidermal IL-10 protein. J Immunol 1994: 153: 5256 – 5264.en_US
dc.identifier.citedreferenceMarch C J, Mosley B, Larsen A et al. Cloning, sequence, and expression of two distinct human intcrleukin-1 complementary DNAs. Nature 1985: 315: 641 – 647.en_US
dc.identifier.citedreferencePonte P, Ng S Y, Engel J, Gunning P, Kedes L. Evolutionary conservation in the untranslated regions of actin mRNAs: DNA sequence of a human Β-actin cDNA. Nucleic Acids Res. 1984: 12: 1687 – 1696.en_US
dc.identifier.citedreferenceAnsel J Luger T A, Lowry D, Perry P, Roop D R, Mountz J D. The expression and modulation of IL-1 alpha in murine keratinocytes. J Immunol 1988: 140: 2274 – 2278.en_US
dc.identifier.citedreferenceSchindler R, Clark B D, Dinarello C A. Dissociation between interleukin-1 beta mRNA and protein synthesis in human peripheral blood mononuclear cells. J Biol Chem 1990: 265: 10232 – 10237.en_US
dc.identifier.citedreferenceShaw G, Kamen R. A conserved AU sequence from the 3 untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 1986: 46: 659 – 667.en_US
dc.identifier.citedreferenceCaput D, Beutler B, Hartog K, Thayer R, Brown-Shimer S, Cerami A. Identification of a common nucleotide sequence in the 3′-untranslated region of mRNA molecules specifying inflammatory mediators. Proc Natl Acad Sci USA. 1986: 83: 1670 – 1674.en_US
dc.identifier.citedreferenceEisenberg S P, Evans R J, Arend W P et al. Primary structure and functional expression from complementary DNA of a human interleukin-1 receptor antagonist. Nature 1990: 343: 341 – 346.en_US
dc.identifier.citedreferenceHammerberg C, Bata-Csorgo Z, Cooper K D. Concordant quantitative analysis of keratinocyte IL-1 and IL-IRa by ELISA on whole culture extracts and by flow cytometry on individual cells. J Invest Dermatol 1993: 100: 580.en_US
dc.identifier.citedreferenceElder J T, Ellingsworth L R, Fisher G J, Voorhecs J J. Transforming growth factor-beta in psoriasis. Pathogenesis and therapy. Ann NY Acad Sci 1990: 593: 218 – 230.en_US
dc.identifier.citedreferenceCreaven P J, Stoll H L Jr. Response to tumor necrosis factor in 2cases of psoriasis. J Am Acad Dermatol 1991: 24: 735 – 737.en_US
dc.identifier.citedreferenceTakematsu H, Ozawa M, Yoshimura T et al. Systemic TNFΑ administration in psoriatic patients: a promising therapeutie modality for severe psoriasis [letter]. Br J Dermatol 1991: 124: 209 – 210.en_US
dc.identifier.citedreferenceGomi T, Shiohara T, Munakata T, Imanishi K Nagashima M.. Interleukin 1 Α. tumor necrosis factor Α, and interferon gamma in psoriasis. Arch Dermatol 1991: 127: 827 – 830.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.