Show simple item record

Gene therapy, bioengineered clotting factors and novel technologies for hemophilia treatment

dc.contributor.authorPierce, G. F.en_US
dc.contributor.authorLillicrap, D.en_US
dc.contributor.authorPipe, Steven W.en_US
dc.contributor.authorVandendriessche, T.en_US
dc.date.accessioned2010-06-01T18:19:22Z
dc.date.available2010-06-01T18:19:22Z
dc.date.issued2007-05en_US
dc.identifier.citationPIERCE, G. F.; LILLICRAP, D.; PIPE, S. W.; VANDENDRIESSCHE, T. (2007). "Gene therapy, bioengineered clotting factors and novel technologies for hemophilia treatment." Journal of Thrombosis and Haemostasis 5(5): 901-906. <http://hdl.handle.net/2027.42/71532>en_US
dc.identifier.issn1538-7933en_US
dc.identifier.issn1538-7836en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71532
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=17459005&dopt=citationen_US
dc.format.extent497727 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights2007 International Society on Thrombosis and Haemostasisen_US
dc.subject.otherCoagulationen_US
dc.subject.otherFactor VIIIen_US
dc.subject.otherFactor IXen_US
dc.subject.otherGene Therapyen_US
dc.subject.otherHemophiliaen_US
dc.subject.otherVectoren_US
dc.titleGene therapy, bioengineered clotting factors and novel technologies for hemophilia treatmenten_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelInternal Medicine and Specialtiesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum† Hemophilia and Coagulation Disorders Program, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationother* Bayer HealthCare LLC, 800 Dwight Way, Berkeley, CA, USAen_US
dc.contributor.affiliationother† Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canadaen_US
dc.contributor.affiliationother§ Center for Transgene Technology and Gene Therapy, Flanders Institute for Biotechnology (VIB), University of Leuven, Leuven, Belgiumen_US
dc.identifier.pmid17459005en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71532/1/j.1538-7836.2007.02410.x.pdf
dc.identifier.doi10.1111/j.1538-7836.2007.02410.xen_US
dc.identifier.sourceJournal of Thrombosis and Haemostasisen_US
dc.identifier.citedreferenceLillicrap D, VandenDriessche T, High K. Cellular and genetic therapies for haemophilia. Haemophilia 2006; 12 ( Suppl. 3 ): 36 – 41.en_US
dc.identifier.citedreferenceShi Q, Wilcox DA, Fahs SA, Weiler H, Wells CW, Cooley BC, Desai D, Morateck PA, Gorski J, Montgomery RR. Factor VIII ectopically targeted to platelets is therapeutic in hemophilia A with high-titer inhibitory antibodies. J Clin Invest 2006; 116: 1974 – 82.en_US
dc.identifier.citedreferenceChang AH, Stephan MT, Sadelain M. Stem cell-derived erythroid cells mediate long-term systemic protein delivery. Nat Biotechnol 2006; 24: 1017 – 21.en_US
dc.identifier.citedreferenceMoayeri M, Hawley TS, Hawley RG. Correction of murine hemophilia A by hematopoietic stem cell gene therapy. Mol Ther 2005; 12: 1034 – 42.en_US
dc.identifier.citedreferenceThorrez L, Vandenburgh H, Callewaert N, Mertens N, Shansky J, Wang L, Arnout J, Collen D, Chuah M, Vandendriessche T. Angiogenesis enhances factor IX delivery and persistence from retrievable human bioengineered muscle implants. Mol Ther 2006; 14: 442 – 51.en_US
dc.identifier.citedreferenceXu L, Nichols TC, Sarkar R, McCorquodale S, Bellinger DA, Ponder KP. Absence of a desmopressin response after therapeutic expression of factor VIII in hemophilia A dogs with liver-directed neonatal gene therapy. Proc Natl Acad Sci U S A 2005; 102: 6080 – 5.en_US
dc.identifier.citedreferenceVandenDriessche T, Vanslembrouck V, Goovaerts I, Zwinnen H, Vanderhaeghen ML, Collen D, Chuah MK. Long-term expression of human coagulation factor VIII and correction of hemophilia A after in vivo retroviral gene transfer in factor VIII-deficient mice [see comments]. Proc Natl Acad Sci U S A 1999; 96: 10379 – 84.en_US
dc.identifier.citedreferenceKang Y, Xie L, Tran DT, Stein CS, Hickey M, Davidson BL, McCray PB Jr. Persistent expression of factor VIII in vivo following nonprimate lentiviral gene transfer. Blood 2005; 106: 1552 – 8.en_US
dc.identifier.citedreferenceFollenzi A, Battaglia M, Lombardo A, Annoni A, Roncarolo MG, Naldini L. Targeting lentiviral vector expression to hepatocytes limits transgene-specific immune response and establishes long-term expression of human antihemophilic factor IX in mice. Blood 2004; 103: 3700 – 9.en_US
dc.identifier.citedreferenceBrown BD, Venneri MA, Zingale A, Sergi LS, Naldini L. Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer. Nat Med 2006; 12: 585 – 91.en_US
dc.identifier.citedreferenceHacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E, Sorensen R, Forster A, Fraser P, Cohen JI, de Saint Basile G, Alexander I, Wintergerst U, Frebourg T, Aurias A, Stoppa-Lyonnet D, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415 – 9.en_US
dc.identifier.citedreferenceThemis M, Waddington SN, Schmidt M, von Kalle C, Wang Y, Al-Allaf F, Gregory LG, Nivsarkar M, Themis M, Holder MV, Buckley SM, Dighe N, Ruthe AT, Mistry A, Bigger B, Rahim A, Nguyen TH, Trono D, Thrasher AJ, Coutelle C. Oncogenesis following delivery of a nonprimate lentiviral gene therapy vector to fetal and neonatal mice. Mol Ther 2005; 12: 763 – 71.en_US
dc.identifier.citedreferenceOlivares EC, Hollis RP, Chalberg TW, Meuse L, Kay MA, Calos MP. Site-specific genomic integration produces therapeutic Factor IX levels in mice. Nat Biotechnol 2002; 20: 1124 – 8.en_US
dc.identifier.citedreferenceChalberg TW, Portlock JL, Olivares EC, Thyagarajan B, Kirby PJ, Hillman RT, Hoelters J, Calos MP. Integration specificity of phage phiC31 integrase in the human genome. J Mol Biol 2006; 357: 28 – 48.en_US
dc.identifier.citedreferenceManno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko J, Ozelo MC, Hoots K, Blatt P, Konkle B, Dake M, Kaye R, Razavi M, Zajko A, Zehnder J, Nakai H, Chew A, Leonard D, Wright JF, Lessard RR, et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 2006; 12: 342 – 7.en_US
dc.identifier.citedreferenceJiang H, Pierce GF, Ozelo MC, de Paula EV, Vargas JA, Smith P, Sommer J, Luk A, Manno CS, High KA, Arruda VR. Evidence of multiyear factor IX expression by AAV-mediated gene transfer to skeletal muscle in an individual with severe hemophilia B. Mol Ther 2006; 14: 452 – 5.en_US
dc.identifier.citedreferenceJiang H, Lillicrap D, Patarroyo-White S, Liu T, Qian X, Scallan CD, Powell S, Keller T, McMurray M, Labelle A, Nagy D, Vargas JA, Zhou S, Couto LB, Pierce GF. delivering factor VIII to hemophilia A mice and dogs. Blood 2, 6, 107 – 15.en_US
dc.identifier.citedreferenceGao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci U S A 2002; 99: 11854 – 9.en_US
dc.identifier.citedreferenceThomas CE, Storm TA, Huang Z, Kay MA. Rapid uncoating of vector genomes is the key to efficient liver transduction with pseudotyped adeno-associated virus vectors. J Virol 2004; 78: 3110 – 22.en_US
dc.identifier.citedreferenceVandenDriessche T, Thorrez L, Acosta-Sanchez A, Petrus I, Wang L, Ma L, De Waele L, Iwasaki Y, Gillijns V, Wilson JM, Collen D, Chuah MK. Efficacy and safety of adeno-associated viral vectors based on serotype 8 and 9 versus lentiviral vectors for hemophilia B gene therapy. J Thromb Haemost 2006; 5: 16 – 24.en_US
dc.identifier.citedreferenceDavidoff AM, Gray JT, Ng CY, Zhang Y, Zhou J, Spence Y, Bakar Y, Nathwani AC. capsid proteins to mediate efficient transduction of the liver in murine and nonhuman primate models. Mol Ther 2, 5, 875 – 88.en_US
dc.identifier.citedreferenceNathwani AC, Gray JT, Ng CY, Zhou J, Spence Y, Waddington SN, Tuddenham EG, Kemball-Cook G, McIntosh J, Boon-Spijker M, Mertens K, Davidoff AM. Self-complementary adeno-associated virus vectors containing a novel liver-specific human factor IX expression cassette enable highly efficient transduction of murine and nonhuman primate liver. Blood 2006; 107: 2653 – 61.en_US
dc.identifier.citedreferenceJiang H, Couto LB, Patarroyo-White S, Liu T, Nagy D, Vargas JA, Zhou S, Scallan CD, Sommer J, Vijay S, Warren D, Mingozzi F, High KA, Pierce GF. Effects of transient immunosuppression on adeno associated virus-mediated, liver-directed gene transfer in rhesus macaques and implications for human gene therapy. Blood 2006; 108: 3321 – 3328.en_US
dc.identifier.citedreferenceVandenberghe LH, Wang L, Somanathan S, Zhi Y, Figueredo J, Calcedo R, Sanmiguel J, Desai RA, Chen CS, Johnston J, Grant RL, Gao G, Wilson JM. Heparin binding directs activation of T cells against adeno-associated virus serotype 2 capsid. Nat Med 2006; 12: 967 – 71.en_US
dc.identifier.citedreferenceScallan CD, Jiang H, Liu T, Patarroyo-White S, Sommer JM, Zhou S, Couto LB, Pierce GF. Human immunoglobulin inhibits liver transduction by AAV vectors at low AAV2 neutralizing titers in SCID mice. Blood 2006; 107: 1810 – 7.en_US
dc.identifier.citedreferenceArruda VR, Stedman HH, Nichols TC, Haskins ME, Nicholson M, Herzog RW, Couto LB, High KA. Regional intravascular delivery of AAV-2-F.IX to skeletal muscle achieves long-term correction of hemophilia B in a large animal model. Blood 2005; 105: 3458 – 64.en_US
dc.identifier.citedreferencePerabo L, Endell J, King S, Lux K, Goldnau D, Hallek M, Buning H. Combinatorial engineering of a gene therapy vector: directed evolution of adeno-associated virus. J Gene Med 2006; 8: 155 – 62.en_US
dc.identifier.citedreferenceHuttner NA, Girod A, Perabo L, Edbauer D, Kleinschmidt JA, Buning H, Hallek M. Genetic modifications of the adeno-associated virus type 2 capsid reduce the affinity and the neutralizing effects of human serum antibodies. Gene Ther 2003; 10: 2139 – 47.en_US
dc.identifier.citedreferenceLochrie MA, Tatsuno GP, Arbetman AE, Jones K, Pater C, Smith PH, McDonnell JW, Zhou SZ, Kachi S, Kachi M, Campochiaro PA, Pierce GF, Colosi P. Adeno-associated virus (AAV) capsid genes isolated from rat and mouse liver genomic DNA define two new AAV species distantly related to AAV-5. Virology 2006; 353: 68 – 82.en_US
dc.identifier.citedreferenceBrown BD, Lillicrap D. Dangerous liaisons: the role of ‘danger’ signals in the immune response to gene therapy. Blood 2002; 100: 1133 – 40.en_US
dc.identifier.citedreferenceHausl C, Ahmad RU, Sasgary M, Doering CB, Lollar P, Richter G, Schwarz HP, Turecek PL, Reipert BM. High-dose factor VIII inhibits factor VIII-specific memory B cells in hemophilia A with factor VIII inhibitors. Blood 2005; 106: 3415 – 22.en_US
dc.identifier.citedreferenceDobrzynski E, Fitzgerald JC, Cao O, Mingozzi F, Wang L, Herzog RW. Prevention of cytotoxic T lymphocyte responses to factor IX-expressing hepatocytes by gene transfer-induced regulatory T cells. Proc Natl Acad Sci U S A 2006; 103: 4592 – 7.en_US
dc.identifier.citedreferencePipe SW. Coagulation factors with improved properties for hemophilia gene therapy. Semin Thromb Hemost 2004; 30: 227 – 37.en_US
dc.identifier.citedreferenceMiao HZ, Sirachainan N, Palmer L, Kucab P, Cunningham MA, Kaufman RJ, Pipe SW. Bioengineering of coagulation factor VIII for improved secretion. Blood 2004; 103: 3412 – 9.en_US
dc.identifier.citedreferenceGale AJ, Pellequer JL. An engineered interdomain disulfide bond stabilizes human blood coagulation factor VIIIa. J Thromb Haemost 2003; 1: 1966 – 71.en_US
dc.identifier.citedreferenceRadtke KP, Griffin JH, Riceberg J, Gale AJ. Disulfide bond-stabilized factor VIII has prolonged factor VIIIa activity and improved potency in whole blood clotting assays. J Thromb Haemost 2006; 5: 102 – 108.en_US
dc.identifier.citedreferenceWakabayashi H, Su YC, Ahmad SS, Walsh PN, Fay PJ. A Glu113Ala mutation within a factor VIII Ca2+-binding site enhances cofactor interactions in factor Xase. Biochemistry 2005; 44: 10298 – 304.en_US
dc.identifier.citedreferenceChang JY, Monroe DM, Stafford DW, Brinkhous KM, Roberts HR. Replacing the first epidermal growth factor-like domain of factor IX with that of factor VII enhances activity in vitro and in canine hemophilia B. J Clin Invest 1997; 100: 886 – 92.en_US
dc.identifier.citedreferenceSchuettrumpf J, Herzog RW, Schlachterman A, Kaufhold A, Stafford DW, Arruda VR. Factor IX variants improve gene therapy efficacy for hemophilia B. Blood 2005; 105: 2316 – 23.en_US
dc.identifier.citedreferenceParker ET, Healey JF, Barrow RT, Craddock HN, Lollar P. Reduction of the inhibitory antibody response to human factor VIII in hemophilia A mice by mutagenesis of the A2 domain B-cell epitope. Blood 2004; 104: 704 – 10.en_US
dc.identifier.citedreferenceJames PD, Raut S, Rivard GE, Poon MC, Warner M, McKenna S, Leggo J, Lillicrap D. Aminoglycoside suppression of nonsense mutations in severe hemophilia. Blood 2005; 106: 3043 – 8.en_US
dc.identifier.citedreferenceBaru M, Carmel-Goren L, Barenholz Y, Dayan I, Ostropolets S, Slepoy I, Gvirtzer N, Fukson V, Spira J. Factor VIII efficient and specific non-covalent binding to PEGylated liposomes enables prolongation of its circulation time and haemostatic efficacy. Thromb Haemost 2005; 93: 1061 – 8.en_US
dc.identifier.citedreferenceSpira J, Plyushch OP, Andreeva TA, Andreev Y. Prolonged bleeding-free period following prophylactic infusion of recombinant factor VIII (Kogenate(R) FS) reconstituted with pegylated liposomes. Blood 2006; 108: 3668 – 73.en_US
dc.identifier.citedreferenceNegrier C. Gene therapy for hemophilia? Yes. J Thromb Haemost 2004; 2: 1234 – 5.en_US
dc.identifier.citedreferenceGiangrande PL. Gene therapy for hemophilia? No. J Thromb Haemost 2004; 2: 1236 – 7.en_US
dc.identifier.citedreferenceTuddenham EG. Gene therapy for hemophilia? Gene therapy for hemophilia is both desirable and achievable in the near future. J Thromb Haemost 2005; 3: 1314.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.