Show simple item record

Evidence for local control of gene expression in the epidermal differentiation complex

dc.contributor.authorElder, James T.en_US
dc.contributor.authorZhao, Xinpingen_US
dc.date.accessioned2010-06-01T18:23:04Z
dc.date.available2010-06-01T18:23:04Z
dc.date.issued2002-10en_US
dc.identifier.citationElder, James T.; Zhao, Xinping (2002). "Evidence for local control of gene expression in the epidermal differentiation complex ." Experimental Dermatology 11(5): 406-412. <http://hdl.handle.net/2027.42/71593>en_US
dc.identifier.issn0906-6705en_US
dc.identifier.issn1600-0625en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71593
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=12366693&dopt=citationen_US
dc.description.abstractThe epidermal differentiation complex (EDC), located on chromosomal band 1q21, consists of at least 43 genes that are expressed during keratinocyte differentiation. Indicative of a role for chromatin structure in tissue specificity of EDC gene expression, we identified an inverse correlation between expression and DNA methylation for two EDC genes (S100A2 and S00A6) in human keratinocytes and fibroblasts. 5-azacytidine (5AC) and sodium butyrate (NaB) are two agents known to promote ‘open’ chromatin structure. To explore the relationship between chromatin structure and keratinocyte differentiation, we treated normal human keratinocytes (NHK) with 5AC or NaB, or with protocols known to promote their terminal differentiation. We then measured the steady-state mRNA levels for several S100 genes, small proline rich region-1, -2, and -3, loricrin, and involucrin by Northern blotting. 5AC and NaB each markedly increased expression of SPRR1/2 and involucrin in NHK. In contrast, expression of S100A2 was reduced by both agents, and by induction of keratinocyte differentiation. Moreover, while the clustered EDC genes displayed a general tendency to be expressed in epithelial cells, they displayed different patterns of cell type-specific expression. These results indicate that local, gene-specific factors play an important role in the regulation of EDC gene expression in the keratinocyte lineage and during keratinocyte terminal differentiation.en_US
dc.format.extent195270 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherMunksgaard International Publishersen_US
dc.publisherBlackwell Publishing Ltden_US
dc.rights© Blackwell Munksgaard 2002en_US
dc.subject.otherHistone Acetylationen_US
dc.subject.otherS100 Genesen_US
dc.subject.otherSodium Butyrateen_US
dc.subject.otherSPRR Genesen_US
dc.titleEvidence for local control of gene expression in the epidermal differentiation complexen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelDentistryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartments of Dermatology and Radiation Oncology (Cancer Biology), University of Michigan,en_US
dc.contributor.affiliationumDepartment of Neurology, University of Michigan, Ann Arbor, MIen_US
dc.contributor.affiliationotherAnn Arbor Veterans Affairs Hospital, Ann Arbor, MI, anden_US
dc.identifier.pmid12366693en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71593/1/j.1600-0625.2002.110503.x.pdf
dc.identifier.doi10.1034/j.1600-0625.2002.110503.xen_US
dc.identifier.sourceExperimental Dermatologyen_US
dc.identifier.citedreferenceEngelkamp D, Schafer B W, Mattei M G, Erne P, Heizmann C W. Six S100 genes are clustered on human chromosome 1q21. identification of two genes coding for the two previously unreported calcium-binding proteins S100D and S100E. Proc Natl Acad Sci U S A 1993: 90: 6547 – 6551.en_US
dc.identifier.citedreferenceBackendorf C, Hohl D. A common origin for cornified envelope proteins? [Letter] Nat Genet 1992: 2: 91.en_US
dc.identifier.citedreferenceMarshall D, Hardman M J, Nield K M, Byrne C. Differentially expressed late constituents of the epidermal cornified envelope. Proc Natl Acad Sci U S A 2001: 98: 13031 – 13036.en_US
dc.identifier.citedreferenceZhao X P, Elder J T. Positional cloning of skin-specific genes from the human epidermal differentiation complex. Genomics 1997: 45: 250 – 258.en_US
dc.identifier.citedreferenceRidinger K, Ilg E C, Niggli F K, Heizmann C W, Schafer B W. Clustered organization of S100 genes in human and mouse. Biochim Biophys Acta 1998: 1448: 254 – 263.en_US
dc.identifier.citedreferenceBird A P, Wolffe A P. Methylation-induced repression – belts, braces, and chromatin. Cell 1999: 99: 451 – 454.en_US
dc.identifier.citedreferenceJenuwein T, Allis C D. Translating the histone code. Science 2001: 293: 1074 – 1080.en_US
dc.identifier.citedreferenceOkada N, Steinberg M L, Defendi V. Re-expression of differentiated properties in SV40-infected human epidermal keratinocytes induced by 5-azacytidine. Exp Cell Res 1984: 153: 198 – 207.en_US
dc.identifier.citedreferenceRosl F, Durst M, zur Hausen H. Selective suppression of human papillomavirus transcription in non-tumorigenic cells by 5-azacytidine. Embo J 1988: 7: 1321 – 1328.en_US
dc.identifier.citedreferenceSchmidt R, Cathelineau C, Cavey M T, et al. Sodium butyrate selectively antagonizes the inhibitory effect of retinoids on cornified envelope formation in cultured human keratinocytes. J Cell Physiol 1989: 140: 281 – 287.en_US
dc.identifier.citedreferenceStaiano Coico L, Helm R E, McMahon C K, et al. Sodium-N-butyrate induces cytoskeletal rearrangements and formation of cornified envelopes in cultured adult human keratinocytes. Cell Tissue Kinet 1989: 22: 361 – 375.en_US
dc.identifier.citedreferenceElder J T, Fisher G J, Zhang Q Y, et al. Retinoic acid receptor gene expression in human skin. J Invest Dermatol 1991: 96: 425 – 433.en_US
dc.identifier.citedreferenceWille J Jr, Pittelkow M R, Shipley G D, Scott R E. Integrated control of growth and differentiation of normal human prokeratinocytes cultured in serum-free medium. clonal analyses, growth kinetics, and cell cycle studies. J Cell Physiol 1984: 121: 31 – 44.en_US
dc.identifier.citedreferenceRheinwald J G, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 1975: 6: 331 – 343.en_US
dc.identifier.citedreferenceBoukamp P, Petrussevska R T, Breitkreutz D, Hornung J, Markham A, Fusenig N E. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 1988: 106: 761 – 771.en_US
dc.identifier.citedreferenceChen T R, Shaw M W. Stable chromosome changes in human malignant melanoma. Cancer Res 1973: 33: 2042 – 2047.en_US
dc.identifier.citedreferenceLozzio C B, Lozzio B B. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 1975: 45: 321 – 334.en_US
dc.identifier.citedreferenceWeiss A, Wiskocil R L, Stobo J D. The role of T3 surface molecules in the activation of human T cells: a two-stimulus requirement for IL 2 production reflects events occurring at a pre-translational level. J Immunol 1984: 133: 123 – 128.en_US
dc.identifier.citedreferenceCollins S J, Gallo R C, Gallagher R E. Continuous growth and differentiation of human myeloid leukaemic cells in suspension culture. Nature 1977: 270: 347 – 349.en_US
dc.identifier.citedreferenceZeuthen J, Norgaard J O, Avner P, et al. Characterization of a human ovarian teratocarcinoma-derived cell line. Int J Cancer 1980: 25: 19 – 32.en_US
dc.identifier.citedreferenceNair R, Guo S, Jenisch S, et al. Scanning chromosome 17 for psoriasis susceptibility: lack of evidence for a distal 17q locus. Hum Hered 1995: 45: 219 – 230.en_US
dc.identifier.citedreferenceAntequera F, Boyes J, Bird A. High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell 1990: 62: 503 – 514.en_US
dc.identifier.citedreferenceSanti D V, Norment A, Garrett C E. Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine. Proc Natl Acad Sci U S A 1984: 81: 6993 – 6997.en_US
dc.identifier.citedreferenceBoffa L C, Vidali G, Mann R S, Allfrey V G. Suppression of histone deacetylation in vivo and in vitro by sodium butyrate. J Biol Chem 1978: 253: 3364 – 3366.en_US
dc.identifier.citedreferenceElder J T, Cromie M A, Griffiths C E, Chambon P, Voorhees J J. Stimulus-selective induction of CRABP-II mRNA. a marker for retinoic acid action in human skin. J Invest Dermatol 1993: 100: 356 – 359.en_US
dc.identifier.citedreferenceXia L, Stoll S W, Liebert M, et al. CaN19 expression in benign and malignant hyperplasias of the skin and oral mucosa: evidence for a role in regenerative differentiation. Cancer Res 1997: 57: 3055 – 3062.en_US
dc.identifier.citedreferenceLaborda J. 36B4 cDNA used as an estradiol-independent mRNA control is the cDNA for human acidic ribosomal phosphoprotein PO. Nucl Acids Res 1991: 19: 3998.en_US
dc.identifier.citedreferenceVan Ruissen F, de Jongh G J, Zeeuwen P L, Van Erp P E, Madsen P, Schalkwijk J. Induction of normal and psoriatic phenotypes in submerged keratinocyte cultures. J Cell Physiol 1996: 168: 442 – 452.en_US
dc.identifier.citedreferenceHardas B D, Zhao X, Zhang J, Longqing X, Stoll S, Elder J T. Assignment of psoriasin to human chromosomal band 1q21: Coordinate overexpression of clustered genes in psoriasis. J Invest Dermatol 1996: 106: 753 – 758.en_US
dc.identifier.citedreferenceRoth J, Goebeler M, van den Bos C, Sorg C. Expression of calcium-binding proteins MRP8 and MRP14 is associated with distinct monocytic differentiation pathways in HL-60 cells. Biochem Biophys Res Commun 1993: 191: 565 – 570.en_US
dc.identifier.citedreferenceBoyes J, Bird A. Repression of genes by DNA methylation depends on CpG density and promoter strength: evidence for involvement of a methyl-CpG binding protein. Embo J 1992: 11: 327 – 333.en_US
dc.identifier.citedreferenceHolliday R. DNA methylation in eukaryotes: 20 years on. In: Russo V E, Martienssen R A, Riggs A, eds. Epigenetic Mechanisms of Gene Regulation. Cold Spring Harbor: CSH Press, 1996: 5 – 27.en_US
dc.identifier.citedreferenceWade P A, Pruss D, Wolffe A P. Histone acetylation: chromatin in action. Trends Biochem Sci 1997: 22: 128 – 132.en_US
dc.identifier.citedreferenceShrestha P, Muramatsu Y, Kudeken W, et al. Localization of Ca (2+)-binding S100 proteins in epithelial tumours of the skin. Virchows Arch 1998: 432: 53 – 59.en_US
dc.identifier.citedreferenceLee E, Jeon Sh, Youn Yi J, et al. Calcipotriol inhibits autocrine phosphorylation of egf receptor in a calcium-dependent manner, a possible mechanism for its inhibition of cell proliferation and stimulation of cell differentiation. Biochem Biophys Res Commun 2001: 284: 419 – 425.en_US
dc.identifier.citedreferenceWilliams R R, Broad S, Sheer D, Ragoussis J. Subchromosomal positioning of the epidermal differentiation complex (EDC) in keratinocyte and lymphoblast interphase nuclei. Exp Cell Res 2002: 272: 163 – 175.en_US
dc.identifier.citedreferenceStaiano Coico L, Higgins P J, Darzynkiewicz Z, et al. Human keratinocyte culture. Identification and staging of epidermal cell subpopulations. J Clin Invest 1986: 77: 396 – 404.en_US
dc.identifier.citedreferenceLee S W, Tomasetto C, Swisshelm K, Keyomarsi K, Sager R. Down-regulation of a member of the S100 gene family in mammary carcinoma cells and reexpression by azadeoxycytidine treatment. Proc Natl Acad Sci U S A 1992: 89: 2504 – 2508.en_US
dc.identifier.citedreferenceWicki R, Franz C, Scholl F A, Heizmann C W, Schafer B W. Repression of the candidate tumor suppressor gene S100A2 in breast cancer is mediated by site-specific hypermethylation. Cell Calcium 1997: 22: 243 – 254.en_US
dc.identifier.citedreferenceAndersen L B, Xia L, Stoll S, Zhao X, Elder J T. Lineage-specific CaN19 expression in human skin: lack of expression in normal melanocytes. J Dermatol Sci 1996: 12: 69 – 72.en_US
dc.identifier.citedreferenceHohl D, de Viragh P A, Amiguet Barras F, Gibbs S, Backendorf C, Huber M. The small proline-rich proteins constitute a multigene family of differentially regulated cornified cell envelope precursor proteins. J Invest Dermatol 1995: 104: 902 – 909.en_US
dc.identifier.citedreferenceEspinos E, Le Van Thai A, Pomies C, Weber M J. Cooperation between phosphorylation and acetylation processes in transcriptional control. Mol Cell Biol 1999: 19: 3474 – 3484.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.