Show simple item record

Characterization of a BAHD acyltransferase responsible for producing the green leaf volatile ( Z )-3-hexen-1-yl acetate in Arabidopsis thaliana

dc.contributor.authorD'Auria, John C.en_US
dc.contributor.authorPichersky, Eranen_US
dc.contributor.authorSchaub, Andreaen_US
dc.contributor.authorHansel, Arminen_US
dc.contributor.authorGershenzon, Jonathanen_US
dc.date.accessioned2010-06-01T18:24:21Z
dc.date.available2010-06-01T18:24:21Z
dc.date.issued2007-01en_US
dc.identifier.citationD'Auria, John C.; Pichersky, Eran; Schaub, Andrea; Hansel, Armin; Gershenzon, Jonathan (2007). "Characterization of a BAHD acyltransferase responsible for producing the green leaf volatile ( Z )-3-hexen-1-yl acetate in Arabidopsis thaliana ." The Plant Journal 49(2): 194-207. <http://hdl.handle.net/2027.42/71614>en_US
dc.identifier.issn0960-7412en_US
dc.identifier.issn1365-313Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71614
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=17163881&dopt=citationen_US
dc.format.extent729745 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights2007 The Authors Journal compilation 2007 Blackwell Publishing Ltden_US
dc.subject.otherArabidopsis Thalianaen_US
dc.subject.otherGreen Leaf Volatileen_US
dc.subject.otherBAHDen_US
dc.subject.otherAcyltransferaseen_US
dc.subject.otherAcetyl Coenzyme  Aen_US
dc.subject.other( Z )-3-hexen-1-yl Acetateen_US
dc.subject.otherMechanical Woundingen_US
dc.titleCharacterization of a BAHD acyltransferase responsible for producing the green leaf volatile ( Z )-3-hexen-1-yl acetate in Arabidopsis thalianaen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109–1048,en_US
dc.contributor.affiliationotherDepartment of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-KnÖll Strasse 8, D-07745 Jena, Germany,en_US
dc.contributor.affiliationotherIonicon Analytik GmbH, Technikerstrasse 21 A, A-6020 Innsbruck, Austria, anden_US
dc.contributor.affiliationotherInstitut fÜr Ionenphysik und Angewandte Physik, Leopold-Franzens UniversitÄt Innsbruck, Innsbruck, Austriaen_US
dc.identifier.pmid17163881en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71614/1/j.1365-313X.2006.02946.x.pdf
dc.identifier.doi10.1111/j.1365-313X.2006.02946.xen_US
dc.identifier.sourceThe Plant Journalen_US
dc.identifier.citedreferenceAlonso, J.M., Stepanova, A.N., Leisse, T.J. et al. ( 2003 ) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science, 301, 653 – 657.en_US
dc.identifier.citedreferenceAndersen, R.A., Hamilton-Kemp, T.R., Hildebrand, D.F., McCracken, C.T., Collins, R.W. and Fleming, P.D. ( 1994 ) Structure-antifungal activity relationships among volatile C-6 and C-9 aliphatic-aldehydes, ketones, and alcohols. J. Agr. Food Chem. 42, 1563 – 1568.en_US
dc.identifier.citedreferenceArimura, G., Kost, C. and Boland, W. ( 2005 ) Herbivore-induced, indirect plant defences. Bba-Mol. Cell. Biol. L. 1734, 91 – 111.en_US
dc.identifier.citedreferenceBate, N.J. and Rothstein, S.J. ( 1998 ) C-6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes. Plant J. 16, 561 – 569.en_US
dc.identifier.citedreferenceBate, N.J., Riley, J.C.M., Thompson, J.E. and Rothstein, S.J. ( 1998a ) Quantitative and qualitative differences in C-6-volatile production from the lipoxygenase pathway in an alcohol dehydrogenase mutant of Arabidopsis thaliana. Physiol. Plant. 104, 97 – 104.en_US
dc.identifier.citedreferenceBate, N.J., Sivasankar, S., Moxon, C., Riley, J.M.C., Thompson, J.E. and Rothstein, S.J. ( 1998b ) Molecular characterization of an Arabidopsis gene encoding hydroperoxide lyase, a cytochrome P-450 that is wound inducible. Plant Physiol. 117, 1393 – 1400.en_US
dc.identifier.citedreferenceBechtold, N., Ellis, J. and Pelletier, G. ( 1993 ) In planta Agrobacterium-mediated gene-transfer by infiltration of adult Arabidopsis thaliana Plants. Cr Acad Sci Iii-Vie, 316, 1194 – 1199.en_US
dc.identifier.citedreferenceBede, J.C., Musser, R.O., Felton, G.W. and Korth, K.L. ( 2006 ) Caterpillar herbivory and salivary enzymes decrease transcript levels of Medicago truncatula genes encoding early enzymes in terpenoid biosynthesis. Plant Mol. Biol. 60, 519 – 531.en_US
dc.identifier.citedreferenceBeekwilder, J., Alvarez-Huerta, M., Neef, E., Verstappen, F.W.A., Bouwmeester, H.J. and Aharoni, A. ( 2004 ) Functional characterization of enzymes forming volatile esters from strawberry and banana. Plant Physiol. 135, 1865 – 1878.en_US
dc.identifier.citedreferenceBell, E. and Mullet, J.E. ( 1993 ) Characterization of an Arabidopsis lipoxygenase gene responsive to methyl jasmonate and wounding. Plant Physiol. 103, 1133 – 1137.en_US
dc.identifier.citedreferenceBeuerle, T. and Pichersky, E. ( 2002 ) Enzymatic synthesis and purification of aromatic coenzyme a esters. Anal. Biochem. 302, 305 – 312.en_US
dc.identifier.citedreferenceBoatright, J., Negre, F., Chen, X.L., Kish, C.M., Wood, B., Peel, G., Orlova, I., Gang, D., Rhodes, D. and Dudareva, N. ( 2004 ) Understanding in vivo benzenoid metabolism in petunia petal tissue. Plant Physiol. 135, 1993 – 2011.en_US
dc.identifier.citedreferenceBradford, M.M. ( 1976 ) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248 – 254.en_US
dc.identifier.citedreferenceCardoza, Y.J., Alborn, H.T. and Tumlinson, J.H. ( 2002 ) In vivo volatile emissions from peanut plants induced by simultaneous fungal infection and insect damage. J. Chem. Ecol. 28, 161 – 174.en_US
dc.identifier.citedreferenceChen, F., Tholl, D., D'Auria, J.C., Farooq, A., Pichersky, E. and Gershenzon, J. ( 2003 ) Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. Plant Cell, 15, 481 – 494.en_US
dc.identifier.citedreferenceCroft, K.P.C., Juttner, F. and Slusarenko, A.J. ( 1993 ) Volatile products of the lipoxygenase pathway evolved from Phaseolus vulgaris (L) leaves inoculated with Pseudomonas syringae Pv-Phaseolicola. Plant Physiol. 101, 13 – 24.en_US
dc.identifier.citedreferenceD'Auria, J.C. ( 2006 ) Acyltransferases in plants: a good time to be BAHD. Curr. Opin. Plant Biol. 9, 331 – 340.en_US
dc.identifier.citedreferenceD'Auria, J.C., Chen, F. and Pichersky, E. ( 2002 ) Characterization of an acyltransferase capable of synthesizing benzylbenzoate and other volatile esters in flowers and damaged leaves of Clarkia breweri. Plant Physiol. 130, 466 – 476.en_US
dc.identifier.citedreferenceDegenhardt, J., Gershenzon, J., Baldwin, I.T. and Kessler, A. ( 2003 ) Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies. Curr. Opin. Biotechnol. 14, 169 – 176.en_US
dc.identifier.citedreferenceDelessert, C., Wilson, I.W., Van der Straeten, D., Dennis, E.S. and Dolferus, R. ( 2004 ) Spatial and temporal analysis of the local response to wounding in Arabidopsis leaves. Plant Mol. Biol. 55, 165 – 181.en_US
dc.identifier.citedreferenceDeng, W.L., Hamilton-Kemp, T.R., Nielsen, M.T., Andersen, R.A., Collins, G.B. and Hildebrand, D.F. ( 1993 ) Effects of 6-carbon aldehydes and alcohols on bacterial proliferation. J. Agr. Food Chem. 41, 506 – 510.en_US
dc.identifier.citedreferenceDuan, H., Huang, M.Y., Palacio, K. and Schuler, M.A. ( 2005 ) Variations in CYP74B2 (hydroperoxide lyase) gene expression differentially affect hexenal signaling in the Columbia and Landsberg erecta ecotypes of Arabidopsis. Plant Physiol. 139, 1529 – 1544.en_US
dc.identifier.citedreferenceDudareva, N., D'Auria, J.C., Nam, K.H., Raguso, R.A. and Pichersky, E. ( 1998 ) Acetyl-CoA:benzylalcohol acetyltransferase an enzyme involved in floral scent production in Clarkia breweri. Plant J. 14, 297 – 304.en_US
dc.identifier.citedreferenceDudareva, N., Pichersky, E. and Gershenzon, J. ( 2004 ) Biochemistry of plant volatiles. Plant Physiol. 135, 1893 – 1902.en_US
dc.identifier.citedreferenceEl-Sharkawy, I., Manriquez, D., Flores, F.B., Regad, F., Bouzayen, M., Latche, A. and Pech, J.C. ( 2005 ) Functional characterization of a melon alcohol acyl-transferase gene family involved in the biosynthesis of ester volatiles. Identification of the crucial role of a threonine residue for enzyme activity. Plant Mol. Biol. 59, 345 – 362.en_US
dc.identifier.citedreferenceEngelberth, J., Alborn, H.T., Schmelz, E.A. and Tumlinson, J.H. ( 2004 ) Airborne signals prime plants against insect herbivore attack. Proc. Natl Acad. Sci. USA, 101, 1781 – 1785.en_US
dc.identifier.citedreferenceFarag, M.A. and Pare, P.W. ( 2002 ) C-6-green leaf volatiles trigger local and systemic VOC emissions in tomato. Phytochemistry, 61, 545 – 554.en_US
dc.identifier.citedreferenceFarag, M.A., Fokar, M., Zhang, H.A., Allen, R.D. and Pare, P.W. ( 2005 ) ( Z )-3-Hexenol induces defense genes and downstream metabolites in maize. Planta, 220, 900 – 909.en_US
dc.identifier.citedreferenceFeussner, I. and Wasternack, C. ( 2002 ) The lipoxygenase pathway. Annu. Rev. Plant Biol. 53, 275 – 297.en_US
dc.identifier.citedreferenceFunk, C., Lewinsohn, E., Vogel, B.S., Steele, C.L. and Croteau, R. ( 1994 ) Regulation of oleoresinosis in Grand Fir ( Abies grandis ) – coordinate induction of monoterpene and diterpene cyclases and 2 cytochrome-P450 dependent diterpenoid hydroxylases by stem wounding. Plant Physiol. 106, 999 – 1005.en_US
dc.identifier.citedreferenceGang, D.R. ( 2005 ) Evolution of flavors and scents. Annu. Rev. Plant Biol. 56, 301 – 325.en_US
dc.identifier.citedreferenceGardner, H.W., Dornbos, D.L. and Desjardins, A.E. ( 1990 ) Hexanal, trans-2-hexenal, and trans-2-nonenal inhibit Soybean, Glycine max, seed germination. J. Agr. Food Chem. 38, 1316 – 1320.en_US
dc.identifier.citedreferenceGolzer, P., Janzowski, C., PoolZobel, B.L. and Eisenbrand, G. ( 1996 ) ( E )-2-hexenal-induced DNA damage and formation of cyclic 1, N -2(1,3-propano)-2′-deoxyguanosine adducts in mammalian cells. Chem. Res. Toxicol. 9, 1207 – 1213.en_US
dc.identifier.citedreferencede Gouw, J., Warneke, C., Karl, T., Eerdekens, G., van der Veen, C. and Fall, R. ( 2003 ) Sensitivity and specificity of atmospheric trace gas detection by proton-transfer-reaction mass spectrometry. Int. J. Mass Spectrom. 223–224, 365 – 382.en_US
dc.identifier.citedreferenceHamilton-Kemp, T.R., Loughrin, J.H., Archbold, D.D., Andersen, R.A. and Hildebrand, D.F. ( 1991 ) Inhibition of pollen germination by volatile compounds including 2-hexenal and 3-hexenal. J. Agr. Food Chem. 39, 952 – 956.en_US
dc.identifier.citedreferenceHamilton-Kemp, T.R., Archbold, D.D., Langlois, B.E. and Collins, R.W. ( 1998 ) Antifungal activity of E -2-hexenal on strawberries and grapes. Abstr. Pap. Am. Chem. S. 216, U34.en_US
dc.identifier.citedreferenceHatanaka, A. ( 1993 ) The Biogeneration of green odor by green leaves. Phytochemistry, 34, 1201 – 1218.en_US
dc.identifier.citedreferenceHildebrand, D.F., Brown, G.C., Jackson, D.M. and Hamilton-Kemp, T.R. ( 1993 ) Effects of some leaf-emitted volatile compounds on aphid population increase. J. Chem. Ecol. 19, 1875 – 1887.en_US
dc.identifier.citedreferenceHoffmann, L., Besseau, S., Geoffroy, P., Ritzenthaler, C., Meyer, D., Lapierre, C., Pollet, B. and Legrand, M. ( 2005 ) Acyltransferase-catalysed p-coumarate ester formation is a committed step of lignin biosynthesis. Plant Biosyst, 139, 50 – 53.en_US
dc.identifier.citedreferenceHolopainen, J.K. ( 2004 ) Multiple functions of inducible plant volatiles. Trends Plant Sci. 9, 529 – 533.en_US
dc.identifier.citedreferenceHomatidou, V.I., Karvouni, S.S., Dourtoglou, V.G. and Poulos, C.N. ( 1992 ) Determination of total volatile components of Cucumis melo L Variety Cantaloupensis. J. Agr. Food Chem. 40, 1385 – 1388.en_US
dc.identifier.citedreferenceKishimoto, K., Matsui, K., Ozawa, R. and Takabayashi, J. ( 2005 ) Volatile C6-aldehydes and allo-ocimene activate defense genes and induce resistance against Botrytis cinerea in Arabidopsis thaliana. Plant Cell Physiol. 46, 1093 – 1102.en_US
dc.identifier.citedreferenceKnudsen, J.T., Tollsten, L. and Bergstrom, L.G. ( 1993 ) Floral scents – a checklist of volatile compounds isolated by headspace techniques. Phytochemistry, 33, 253 – 280.en_US
dc.identifier.citedreferenceKobayashi, A., Kubota, K., Joki, Y., Wada, E. and Wakabayashi, M. ( 1994 ) ( Z )-3-hexenyl-Beta-d-glucopyranoside in fresh tea leaves as a precursor of green odor. Biosci. Biotech. Bioch. 58, 592 – 593.en_US
dc.identifier.citedreferenceKunert, M., Biedermann, A., Koch, T. and Boland, W. ( 2002 ) Ultrafast sampling and analysis of plant volatiles by a hand-held miniaturised GC with pre-concentration unit: kinetic and quantitative aspects of plant volatile production. J. Sep. Sci. 25, 677 – 684.en_US
dc.identifier.citedreferenceLindinger, W., Hansel, A. and Jordan, A. ( 1998 ) On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research. Int. J. Mass Spectrom. Ion Processes, 173, 191 – 241.en_US
dc.identifier.citedreferenceMa, X.Y., Koepke, J., Bayer, A., Linhard, V., Fritzsch, G., Zhang, B., Michel, H. and Stockigt, J. ( 2004 ) Vinorine synthase from Rauvolfia: the first example of crystallization and preliminary X-ray diffraction analysis of an enzyme of the BAHD superfamily. Bba-Proteins Proteom, 1701, 129 – 132.en_US
dc.identifier.citedreferenceMa, X.Y., Koepke, J., Panjikar, S., Fritzsch, G. and Stockigt, J. ( 2005 ) Crystal structure of vinorine synthase, the first representative of the BAHD superfamily. J. Biol. Chem. 280, 13576 – 13583.en_US
dc.identifier.citedreferenceMatsui, K. ( 2006 ) Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr. Opin. Plant Biol. 9, 274 – 280.en_US
dc.identifier.citedreferenceMatsui, K., Kurishita, S., Hisamitsu, A. and Kajiwara, T. ( 2000 ) A lipid-hydrolysing activity involved in hexenal formation. Biochem. Soc. Trans. 28, 857 – 860.en_US
dc.identifier.citedreferenceMcBride, K.E. and Summerfelt, K.R. ( 1990 ) Improved binary vectors for Agrobacterium-mediated plant transformation. Plant Mol. Biol. 14, 269 – 276.en_US
dc.identifier.citedreferenceMelan, M.A., Dong, X., Endara, M.E., Davis, K.R., Ausubel, F.M. and Peterman, T.K. ( 1993 ) An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid, and methyl jasmonate. Plant Physiol. 101, 441 – 450.en_US
dc.identifier.citedreferenceMithofer, A., Wanner, G. and Boland, W. ( 2005 ) Effects of feeding Spodoptera littoralis on lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission. Plant Physiol. 137, 1160 – 1168.en_US
dc.identifier.citedreferenceMusser, R.O., Cipollini, D.F., Hum-Musser, S.M., Williams, S.A., Brown, J.K. and Felton, G.W. ( 2005 ) Evidence that the caterpillar salivary enzyme glucose oxidase provides herbivore offense in solanaceous plants. Arch. Insect. Biochem. Physiol. 58, 128 – 137.en_US
dc.identifier.citedreferenceParada, F., Duque, C. and Fujimoto, Y. ( 2000 ) Free and bound volatile composition and characterization of some glucoconjugates as aroma precursors in Melon de olor fruit pulp ( Sicana odorifera ). J. Agr. Food Chem. 48, 6200 – 6204.en_US
dc.identifier.citedreferencePare, P.W., Farag, M.A., Krishnamachari, V., Zhang, H.M., Ryu, C.M. and Kloepper, J.W. ( 2005 ) Elicitors and priming agents initiate plant defense responses. Photosynth. Res. 85, 149 – 159.en_US
dc.identifier.citedreferencePfaffl, M.W. ( 2001 ) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45.en_US
dc.identifier.citedreferencePichersky, E., Noel, J.P. and Dudareva, N. ( 2006 ) Biosynthesis of plant volatiles: nature's diversity and ingenuity. Science, 311, 808 – 811.en_US
dc.identifier.citedreferenceProst, I., Dhondt, S., Rothe, G. et al. ( 2005 ) Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens 10.1104/pp.105.066274. Plant Physiol. 139, 1902 – 1913.en_US
dc.identifier.citedreferenceReymond, P., Weber, H., Damond, M. and Farmer, E.E. ( 2000 ) Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell, 12, 707 – 719.en_US
dc.identifier.citedreferenceReymond, P., Bodenhausen, N., Van Poecke, R.M.P., Krishnamurthy, V., Dicke, M. and Farmer, E.E. ( 2004 ) A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell, 16, 3132 – 3147.en_US
dc.identifier.citedreferenceRose, U.S.R., Lewis, W.J. and Tumlinson, J.H. ( 1998 ) Specificity of systemically released cotton volatiles as attractants for specialist and generalist parasitic waSPS. J. Chem. Ecol. 24, 303 – 319.en_US
dc.identifier.citedreferenceRuther, J. and Furstenau, B. ( 2005 ) Emission of herbivore-induced volatiles in absence of a herbivore – response of Zea mays to green leaf volatiles and terpenoids. Z. Naturforsch. C. 60, 743 – 756.en_US
dc.identifier.citedreferenceSt Pierre, B. and De Luca, V. ( 2000 ) Evolution of acyltransferase genes: origin and diversification of the BAHD superfamily of acyltransferases involved in secondary metabolism. In Recent Advances in Phytochemistry Evolution of Metabolic Pathways ( Romeo, J.T., Luc Varin, R.I. and De Luca, V., eds ). Oxford: Elsevier Science Ltd., pp. 285 – 315.en_US
dc.identifier.citedreferenceSteele, C.L., Katoh, S., Bohlmann, J. and Croteau, R. ( 1998 ) Regulation of oleoresinosis in grand fir ( Abies grandis ) – differential transcriptional control of monoterpene, sesquiterpene, and diterpene synthase genes in response to wounding. Plant Physiol. 116, 1497 – 1504.en_US
dc.identifier.citedreferenceTohge, T., Nishiyama, Y., Hirai, M.Y. et al. ( 2005 ) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J. 42, 218 – 235.en_US
dc.identifier.citedreferenceTollsten, L. and Bergstrom, G. ( 1988 ) Headspace volatiles of whole plants and macerated plant-parts of Brassica and Sinapis. Phytochemistry, 27, 2073 – 2077.en_US
dc.identifier.citedreferenceVan Poecke, R.M.P., Posthumus, M.A. and Dicke, M. ( 2001 ) Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: chemical, behavioral, and gene-expression analysis. J. Chem. Ecol. 27, 1911 – 1928.en_US
dc.identifier.citedreferenceVaughn, S.F., Spencer, G.F. and Shasha, B.S. ( 1993 ) Volatile compounds from raspberry and strawberry fruit inhibit postharvest decay fungi. J. Food Sci. 58, 793 – 796.en_US
dc.identifier.citedreferenceYan, Z.G. and Wang, C.Z. ( 2006 ) Wound-induced green leaf volatiles cause the release of acetylated derivatives and a terpenoid in maize. Phytochemistry, 67, 34 – 42.en_US
dc.identifier.citedreferenceZeringue, H.J. and Mccormick, S.P. ( 1989 ) Relationships between cotton leaf-derived volatiles and growth of Aspergillus flavus. J. Am. Oil Chem. Soc. 66, 581 – 585.en_US
dc.identifier.citedreferenceZeringue, H.J., Brown, R.L., Neucere, J.N. and Cleveland, T.E. ( 1996 ) Relationships between C-6-C-12 alkanal and alkenal volatile contents and resistance of maize genotypes to Aspergillus flavus and aflatoxin production. J. Agr. Food Chem. 44, 403 – 407.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.