Show simple item record

The Classical Complement Pathway in Transplantation: Unanticipated Protective Effects of C1q and Role in Inductive Antibody Therapy

dc.contributor.authorCsencsits, Keri L.en_US
dc.contributor.authorBurrell, B. E.en_US
dc.contributor.authorLu, G.en_US
dc.contributor.authorEichwald, Ernst J.en_US
dc.contributor.authorStahl, G. L.en_US
dc.contributor.authorBishop, D. Keithen_US
dc.date.accessioned2010-06-01T18:27:50Z
dc.date.available2010-06-01T18:27:50Z
dc.date.issued2008-08en_US
dc.identifier.citationCsencsits, K.; Burrell, B. E.; Lu, G.; Eichwald, E. J.; Stahl, G. L.; Bishop, D. K. (2008). "The Classical Complement Pathway in Transplantation: Unanticipated Protective Effects of C1q and Role in Inductive Antibody Therapy." American Journal of Transplantation 8(8): 1622-1630. <http://hdl.handle.net/2027.42/71671>en_US
dc.identifier.issn1600-6135en_US
dc.identifier.issn1600-6143en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71671
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18557731&dopt=citationen_US
dc.format.extent431163 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights© 2008 American Society of Transplantation and the American Society of Transplant Surgeonsen_US
dc.subject.otherAntibodiesen_US
dc.subject.otherComplementen_US
dc.subject.otherTransplantationen_US
dc.titleThe Classical Complement Pathway in Transplantation: Unanticipated Protective Effects of C1q and Role in Inductive Antibody Therapyen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMedicine (General)en_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumGraduate Program in Immunology, University of Michigan School of Medicine, Ann Arbor, MIen_US
dc.contributor.affiliationotherSection of General Surgery, Department of Surgeryen_US
dc.contributor.affiliationotherDepartment of Pathology, University of Utah School of Medicine, Salt Lake City, UTen_US
dc.contributor.affiliationotherCenter for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MAen_US
dc.identifier.pmid18557731en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71671/1/j.1600-6143.2008.02295.x.pdf
dc.identifier.doi10.1111/j.1600-6143.2008.02295.xen_US
dc.identifier.sourceAmerican Journal of Transplantationen_US
dc.identifier.citedreferenceBaldwin WM, Ota H, Rodriguez ER. Complement in transplant rejection: Diagnostic and mechanistic considerations. Springer Semin Immunopathol 2003; 25: 181 – 197.en_US
dc.identifier.citedreferenceGhebrehiwet B, Habicht GS, Beck G. Interaction of C1q with its receptor on cultured cell lines induces an anti-proliferative response. Clin Immunol Immunopathol 1990; 54: 148 – 160.en_US
dc.identifier.citedreferenceVegh Z, Goyarts EC, Rozengarten K, Mazumder A, Ghebrehiwet B. Maturation-dependent expression of C1q-binding proteins on the cell surface of human monocyte-derived dendritic cells. Int Immunopharmacol 2003; 3: 345 – 357.en_US
dc.identifier.citedreferenceKishore U, Reid KB. C1q: Structure, function, and receptors. Immunopharmacology 2000; 49: 159 – 170.en_US
dc.identifier.citedreferenceVan Den Berg RH, Faber-Krol MC, Sim RB, Daha MR. The first subcomponent of complement, C1q, triggers the production of IL-8, IL-6, and monocyte chemoattractant peptide-1 by human umbilical vein endothelial cells. J Immunol 1998; 161: 6924 – 6930.en_US
dc.identifier.citedreferenceLozada C, Levin RI, Huie M et al. Identification of C1q as the heat-labile serum cofactor required for immune complexes to stimulate endothelial expression of the adhesion molecules E-selectin and intercellular and vascular cell adhesion molecules 1. Proc Natl Acad Sci U S A 1995; 92: 8378 – 8382.en_US
dc.identifier.citedreferenceYoung KR Jr, Ambrus JL Jr, Malbran A, Fauci AS, Tenner AJ. Complement subcomponent C1q stimulates Ig production by human B lymphocytes. J Immunol 1991; 146: 3356 – 3364.en_US
dc.identifier.citedreferenceRossbacher J, Shlomchik MJ. The B cell receptor itself can activate complement to provide the complement receptor 1/2 ligand required to enhance B cell immune responses in vivo. J Exp Med 2003; 198: 591 – 602.en_US
dc.identifier.citedreferenceChen A, Gaddipati S, Hong Y, Volkman DJ, Peerschke EI, Ghebrehiwet B. Human T cells express specific binding sites for C1q. Role in T cell activation and proliferation. J Immunol 1994; 153: 1430 – 1440.en_US
dc.identifier.citedreferenceBowness P, Davies KA, Norsworthy PJ et al. Hereditary C1q deficiency and systemic lupus erythematosus. QJM 1994; 87: 455 – 464.en_US
dc.identifier.citedreferencePickering MC, Botto M, Taylor PR, Lachmann PJ, Walport MJ. Systemic lupus erythematosus, complement deficiency, and apoptosis. Adv Immunol 2000; 76: 227 – 324.en_US
dc.identifier.citedreferenceTaylor PR, Carugati A, Fadok VA et al. A hierarchical role for classical pathway complement proteins in the clearance of apoptotic cells in vivo. J Exp Med 2000; 192: 359 – 366.en_US
dc.identifier.citedreferenceMitchell DA, Pickering MC, Warren J et al. C1q deficiency and autoimmunity: The effects of genetic background on disease expression. J Immunol 2002; 168: 2538 – 2543.en_US
dc.identifier.citedreferenceBotto M, Dell'Agnola C, Bygrave AE et al. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat Genet 1998; 19: 56 – 59.en_US
dc.identifier.citedreferenceRobson MG, Cook HT, Botto M et al. Accelerated nephrotoxic nephritis is exacerbated in C1q-deficient mice. J Immunol 2001; 166: 6820 – 6828.en_US
dc.identifier.citedreferenceKorb LC, Ahearn JM. C1q binds directly and specifically to surface blebs of apoptotic human keratinocytes: Complement deficiency and systemic lupus erythematosus revisited. J Immunol 1997; 158: 4525 – 4528.en_US
dc.identifier.citedreferenceNavratil JS, Watkins SC, Wisnieski JJ, Ahearn JM. The globular heads of C1q specifically recognize surface blebs of apoptotic vascular endothelial cells. J Immunol 2001; 166: 3231 – 3239.en_US
dc.identifier.citedreferenceNauta AJ, Trouw LA, Daha MR et al. Direct binding of C1q to apoptotic cells and cell blebs induces complement activation. Eur J Immunol 2002; 32: 1726 – 1736.en_US
dc.identifier.citedreferenceBaldwin WM 3rd., Kasper EK, Zachary AA, Wasowska BA, Rodriguez ER. Beyond C4d: Other complement-related diagnostic approaches to antibody-mediated rejection. Am J Transplant 2004; 4: 311 – 318.en_US
dc.identifier.citedreferenceSerinsÖz E, Bock O, Gwinner W et al. Local complement C3 expression is upregulated in humoral and cellular rejection of renal allografts. Am J Transplant 2005; 5: 1490 – 1494.en_US
dc.identifier.citedreferenceBehr TM, Feucht HE, Richter K et al. Detection of humoral rejection in human cardiac allografts by assessing the capillary deposition of complement fragment C4d in endomyocardial biopsies. J Heart Lung Transplant 1999; 18: 904 – 912.en_US
dc.identifier.citedreferenceCollins AB, Schneeberger EE, Pascual MA et al. Complement activation in acute humoral renal allograft rejection: Diagnostic significance of C4d deposits in peritubular capillaries. J Am Soc Nephrol 1999; 10: 2208 – 2214.en_US
dc.identifier.citedreferenceCrespo M, Pascual M, Tolkoff-Rubin N et al. Acute humoral rejection in renal allograft recipients: I. Incidence, serology and clinical characteristics. Transplantation 2001; 71: 652 – 658.en_US
dc.identifier.citedreferenceBohmig GA, Exner M, Habicht A et al. Capillary C4d deposition in kidney allografts: A specific marker of alloantibody-dependent graft injury. J Am Soc Nephrol 2002; 13: 1091 – 1099.en_US
dc.identifier.citedreferenceMengel M, Bogers J, Bosmans JL et al. Incidence of C4d stain in protocol biopsies from renal allografts: Results from a multicenter trial. Am J Transplant 2005; 5: 1050 – 1056.en_US
dc.identifier.citedreferencePoduval RD, Kadambi PV, Josephson MA et al. Implications of immunohistochemical detection of C4d along peritubular capillaries in late acute renal allograft rejection. Transplantation 2005; 79: 228 – 235.en_US
dc.identifier.citedreferenceNakashima S, Qian Z, Rahimi S, Wasowska BA, Baldwin WM, 3rd. Membrane attack complex contributes to destruction of vascular integrity in acute lung allograft rejection. J Immunol 2002; 169: 4620 – 4627.en_US
dc.identifier.citedreferenceQian Z, Wasowska BA, Behrens E et al. C6 produced by macrophages contributes to cardiac allograft rejection. Am J Pathol 1999; 155: 1293 – 1302.en_US
dc.identifier.citedreferenceBrauer RB, Baldwin WM 3rd, Ibrahim S, Sanfilippo F. The contribution of terminal complement components to acute and hyperacute allograft rejection in the rat. Transplantation 1995; 59: 288 – 293.en_US
dc.identifier.citedreferenceOta H, Fox-Talbot K, Hu W et al. Terminal complement components mediate release of von Willebrand factor and adhesion of platelets in arteries of allografts. Transplantation 2005; 79: 276 – 281.en_US
dc.identifier.citedreferenceGriselli M, Herbert J, Hutchinson WL et al. C-reactive protein and complement are important mediators of tissue damage in acute myocardial infarction. J Exp Med 1999; 190: 1733 – 1740.en_US
dc.identifier.citedreferenceJordan JE, Montalto MC, Stahl GL. Inhibition of mannose-binding lectin reduces postischemic myocardial reperfusion injury. Circulation 2001; 104: 1413 – 1418.en_US
dc.identifier.citedreferenceWada K, Montalto MC, Stahl GL. Inhibition of complement C5 reduces local and remote organ injury after intestinal ischemia/reperfusion in the rat. Gastroenterology 2001; 120: 126 – 133.en_US
dc.identifier.citedreferenceFleming SD, Shea-Donohue T, Guthridge JM et al. Mice deficient in complement receptors 1 and 2 lack a tissue injury-inducing subset of the natural antibody repertoire. J Immunol 2002; 169: 2126 – 2133.en_US
dc.identifier.citedreferenceReid RR, Woodcock S, Shimabukuro-Vornhagen A et al. Functional activity of natural antibody is altered in Cr2-deficient mice. J Immunol 2002; 169: 5433 – 5440.en_US
dc.identifier.citedreferenceZhao H, Montalto MC, Pfeiffer KJ, Hao L, Stahl GL. Murine model of gastrointestinal ischemia associated with complement-dependent injury. J Appl Physiol 2002; 93: 338 - 345.en_US
dc.identifier.citedreferenceAusten WG Jr., Kobzik L, Carroll MC, Hechtman HB, Moore FD Jr. The role of complement and natural antibody in intestinal ischemia-reperfusion injury. Int J Immunopathol Pharmacol 2003; 16: 1 – 8.en_US
dc.identifier.citedreferenceStahl GL, Xu Y, Hao L et al. Role for the alternative complement pathway in ischemia/reperfusion injury. Am J Pathol 2003; 162: 449 – 455.en_US
dc.identifier.citedreferenceHart ML, Ceonzo KA, Shaffer LA et al. Gastrointestinal ischemia-reperfusion injury is lectin complement pathway dependent without involving C1q. J Immunol 2005; 174: 6373 – 6380.en_US
dc.identifier.citedreferenceDi Gaetano N, Cittera E, Nota R et al. Complement activation determines the therapeutic activity of rituximab in vivo. J Immunol 2003; 171: 1581 – 1587.en_US
dc.identifier.citedreferenceSÁnchez-Fueyo A, Domenig C, Strom TB, Zheng XX. The complement dependent cytotoxicity (CDC) immune effector mechanism contributes to anti-CD154 induced immunosuppression. Transplantation 2002; 74: 898 – 900.en_US
dc.identifier.citedreferenceMonk NJ, Hargreaves RE, Marsh JE et al. Fc-dependent depletion of activated T cells occurs through CD40L-specific antibody rather than costimulation blockade. Nat Med 2003; 9: 1275 – 1280.en_US
dc.identifier.citedreferenceBanda NK, Takahashi K, Wood AK, Holers VM, Arend WP. Pathogenic complement activation in collagen antibody-induced arthritis in mice requires amplification by the alternative pathway. J Immunol 2007; 179: 4101 – 4109.en_US
dc.identifier.citedreferenceCorry RJ, Winn HJ, Russell PS. Primarily vascularized allografts of hearts in mice. The role of H-2D, H-2K, and non-H-2 antigens in rejection. Transplantation 1973; 16: 343 – 350.en_US
dc.identifier.citedreferenceMatesic D, Lehmann PV, Heeger PS High-resolution characterization of cytokine-producing alloreactivity in naive and allograft-primed mice. Transplantation 1998; 65: 906 – 914.en_US
dc.identifier.citedreferenceBishop DK, DeBruyne LA, Chan S, Xu S, Eichwald EJ. Dissociation of mouse cardiac transplant rejection and donor alloantigen-specific T cell responsiveness. Transpl Immunol 1995; 3: 222 – 228.en_US
dc.identifier.citedreferenceChan SY, DeBruyne LA, Goodman RE, Eichwald EJ, Bishop DK. In vivo depletion of CD8+ T cells results in Th2 cytokine production and alternate mechanisms of allograft rejection. Transplantation 1995; 59: 1155 – 1161.en_US
dc.identifier.citedreferenceMurata K, Fox-Talbot K, Qian Z et al. Synergistic deposition of C4d by complement-activating and non-activating antibodies in cardiac transplants. Am J Transplant 2007; 7: 2605 – 2614.en_US
dc.identifier.citedreferenceBishop DK, Shelby J, Eichwald EJ. Mobilization of T lymphocytes following cardiac transplantation. Evidence that CD4-positive cells are required for cytotoxic T lymphocyte activation, inflammatory endothelial development, graft infiltration, and acute allograft rejection. Transplantation 1992; 53: 849 – 857.en_US
dc.identifier.citedreferenceBishop DK, Li W, Chan SY, Ensley RD, Shelby J, Eichwald EJ. Helper T lymphocyte unresponsiveness to cardiac allografts following transient depletion of CD4-positive cells. Implications for cellular and humoral responses. Transplantation 1994; 58: 576 – 584.en_US
dc.identifier.citedreferenceBishop DK, Chan Wood S, Eichwald EJ, Orosz CG. Immunobiology of allograft rejection in the absence of IFN-Γ: CD8+ effector cells develop independently of CD4+ cells and CD40-CD40 ligand interactions. J Immunol 2001; 166: 3248 – 3255.en_US
dc.identifier.citedreferencePiccotti JR, Li K, Chan SY, Eichwald EJ, Bishop DK. Cytokine regulation of chronic cardiac allograft rejection: Evidence against a role for Th1 in the disease process. Transplantation 1999; 67: 1548 – 1555.en_US
dc.identifier.citedreferenceNathan MJ, Yin D, Eichwald EJ, Bishop DK. The immunobiology of inductive anti-CD40L therapy in transplantation: Allograft acceptance is not dependent upon the deletion of graft-reactive T cells. Am J Transplant 2002; 2: 323 – 332.en_US
dc.identifier.citedreferencePiccotti JR, Li K, Chan SY et al. Alloantigen-reactive Th1 development in IL-12-deficient mice. J Immunol 1998; 160: 1132 – 1138.en_US
dc.identifier.citedreferenceJooste SV, Colvin RB, Soper WD, Winn HJ. The vascular bed as the primary target in the destruction of skin grafts by antiserum. I. Resistance of freshly placed xenografts of skin to antiserum. J Exp Med 1981; 154: 1319 – 1331.en_US
dc.identifier.citedreferenceGhobrial RR, Boublik M, Winn HJ, Auchincloss H Jr. In vivo use of monoclonal antibodies against murine T cell antigens. Clin Immunol Immunopathol 1989; 52: 486 – 506.en_US
dc.identifier.citedreferenceZhang M, Austen WG Jr., Chiu I et al. Identification of a specific self-reactive IgM antibody that initiates intestinal ischemia/reperfusion injury. Proc Natl Acad Sci USA 2004; 101: 3886 – 3891.en_US
dc.identifier.citedreferenceWalsh MC, Bourcier T, Takahashi K et al. Mannose-binding lectin is a regulator of inflammation that accompanies myocardial ischemia and reperfusion injury. J Immunol 2005; 175: 541 – 546.en_US
dc.identifier.citedreferenceLonghi MP, Harris CL, Morgan BP, Gallimore A. Holding T cells in check—a new role for complement regulators? Trends Immunol 2006; 27: 102 – 108.en_US
dc.identifier.citedreferenceVoll RE, Herrmann M, Roth EA, Stach C, Kalden JR, Girkontaite I. Immunosuppressive effects of apoptotic cells. Nature 1997; 390: 350 – 351.en_US
dc.identifier.citedreferenceWang Z, Larregina AT, Shufesky WJ et al. Use of the inhibitory effect of apoptotic cells on dendritic cells for graft survival via T-cell deletion and regulatory T cells. Am J Transplant 2006; 6: 1297 – 1311.en_US
dc.identifier.citedreferenceCutler AJ, Botto M, van Essen D et al. T cell-dependent immune response in C1q-deficient mice: defective interferon Γ production by antigen-specific T cells. J Exp Med 1998; 187: 1789 – 1797.en_US
dc.identifier.citedreferenceGuan EN, Burgess WH, Robinson SL, Goodman EB, McTigue KJ, Tenner AJ. Phagocytic cell molecules that bind the collagen-like region of C1q. Involvement in the C1q-mediated enhancement of phagocytosis. J Biol Chem 1991; 266: 20345 – 20355.en_US
dc.identifier.citedreferenceTenner AJ. Functional aspects of the C1q receptors. Behring Inst Mitt 1993; 93: 241 – 253.en_US
dc.identifier.citedreferenceTenner AJ, Robinson SL, Ezekowitz RA. Mannose binding protein (MBP) enhances mononuclear phagocyte function via a receptor that contains the 126,000 M(r) component of the C1q receptor. Immunity 1995; 3: 485 – 493.en_US
dc.identifier.citedreferencevan Montfoort N, de Jong JM, Schuurhuis DH et al. A novel role of complement factor C1q in augmenting the presentation of antigen captured in immune complexes to CD8+ T lymphocytes. J Immunol 2007; 178: 7581 – 7586.en_US
dc.identifier.citedreferenceTuzun E, Li J, Saini SS, Yang H, Christadoss P. Pros and cons of treating murine myasthenia gravis with anti-C1q antibody. J Neuroimmunol 2007; 182: 167 – 176.en_US
dc.identifier.citedreferenceLin T, Zhou W, Farrar CA, Hargreaves RE, Sheerin NS, Sacks SH. Deficiency of C4 from donor or recipient mouse fails to prevent renal allograft rejection. Am J Pathol 2006; 168: 1241 – 1248.en_US
dc.identifier.citedreferenceMarsh JE, Farmer CK, Jurcevic S, Wang Y, Carroll MC, Sacks SH. The allogeneic T and B cell response is strongly dependent on complement components C3 and C4. Transplantation 2001; 72: 1310 – 1318.en_US
dc.identifier.citedreferenceJelezarova E, Vogt A, Lutz HU. Interaction of C3b(2)–IgG complexes with complement proteins properdin, factor B and factor H: Implications for amplification. Biochem J 2000; 349 ( Pt 1 ): 217 – 223.en_US
dc.identifier.citedreferenceBlotta MH, Marshall JD, DeKruyff RH, Umetsu DT. Cross-linking of the CD40 ligand on human CD4+ T lymphocytes generates a costimulatory signal that up-regulates IL-4 synthesis. J Immunol 1996; 156: 3133 – 3140.en_US
dc.identifier.citedreferenceBlair PJ, Riley JL, Harlan DM et al. CD40 ligand (CD154) triggers a short-term CD4 + T cell activation response that results in secretion of immunomodulatory cytokines and apoptosis. J Exp Med 2000; 191: 651 – 660.en_US
dc.identifier.citedreferenceKoniecnzy BT, Dai Z, Elwood ET et al. IFN-Γ is critical for long-term allograft survival induced by blocking the CD28 and CD40 ligand T cell costimulation pathways. J Immunol 1998; 160: 2059 – 2064.en_US
dc.identifier.citedreferenceFeucht HE. Complement C4d in graft capillaries—the missing link in the recognition of humoral alloreactivity. Am J Transplant 2003; 3: 646 – 652.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.