Show simple item record

An Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense

dc.contributor.authorChen, Fengen_US
dc.contributor.authorD'Auria, John C.en_US
dc.contributor.authorTholl, Dorotheaen_US
dc.contributor.authorRoss, Jeannine R.en_US
dc.contributor.authorGershenzon, Jonathanen_US
dc.contributor.authorNoel, Joseph P.en_US
dc.contributor.authorPichersky, Eranen_US
dc.date.accessioned2010-06-01T18:28:08Z
dc.date.available2010-06-01T18:28:08Z
dc.date.issued2003-12en_US
dc.identifier.citationChen, Feng; D'Auria, John C.; Tholl, Dorothea; Ross, Jeannine R.; Gershenzon, Jonathan; Noel, Joseph P.; Pichersky, Eran (2003). "An Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense." The Plant Journal 36(5): 577-588. <http://hdl.handle.net/2027.42/71676>en_US
dc.identifier.issn0960-7412en_US
dc.identifier.issn1365-313Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71676
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=14617060&dopt=citationen_US
dc.description.abstractEmission of methylsalicylate (MeSA), and occasionally of methylbenzoate (MeBA), from Arabidopsis thaliana leaves was detected following the application of some forms of both biotic and abiotic stresses to the plant. Maximal emission of MeSA was observed following alamethicin treatment of leaves. A gene ( AtBSMT1 ) encoding a protein with both benzoic acid (BA) and salicylic acid (SA) carboxyl methyltransferase activities was identified using a biochemical genomics approach. Its ortholog ( AlBSMT1 ) in A. lyrata , a close relative of A. thaliana , was also isolated. The AtBSMT1 protein utilizes SA more efficiently than BA, whereas AlBSMT1 catalyzes the methylation of SA less effectively than that of BA. The AtBSMT1 and AlBSMT1 genes showed expression in leaves under normal growth conditions and were more highly expressed in the flowers. In A. thaliana leaves, the expression of AtBSMT1 was induced by alamethicin, Plutella xylostella herbivory, uprooting, physical wounding, and methyl jasmonate. SA was not an effective inducer. Using a β-glucuronidase (GUS) reporter approach, the promoter activity of AtBSMT1 was localized to the sepals of flowers, and also to leaf trichomes and hydathodes. Upon thrip damage to leaves, AtBSMT1 promoter activity was induced specifically around the lesions.en_US
dc.format.extent254439 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights© 2003 Blackwell Publishing Ltden_US
dc.subject.otherArabidopsis Lyrataen_US
dc.subject.otherBenzenoidsen_US
dc.subject.otherEmissionen_US
dc.subject.otherGene Familyen_US
dc.subject.otherMethyltransferaseen_US
dc.subject.otherVolatile Estersen_US
dc.titleAn Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defenseen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA,en_US
dc.contributor.affiliationotherMax Planck Institute for Chemical Ecology, Beutenberg Campus, Winzerlaer Strasse 10, D-07745 Jena, Germany, anden_US
dc.contributor.affiliationotherStructural Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USAen_US
dc.identifier.pmid14617060en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71676/1/j.1365-313X.2003.01902.x.pdf
dc.identifier.doi10.1046/j.1365-313X.2003.01902.xen_US
dc.identifier.sourceThe Plant Journalen_US
dc.identifier.citedreferenceBechtold, N., Ellis, J. and Pelletier, G. ( 1993 ) In planta Agrobacterium -mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. Comptes. Rendus. Acad. Sci. Ser. III Sci. Vie-Life. Sci. 316, 1194 – 1199.en_US
dc.identifier.citedreferenceBrewer, D., Mason, F. G. and Taylor, A. ( 1987 ) The production of alamethicins by Trichoderma spp. Can. J. Microbiol. 33, 619 – 625.en_US
dc.identifier.citedreferenceChen, F., Tholl, D., D'Auria, J. C., Farooq, A., Pichersky, E. and Gershenzon, J. ( 2003 ) Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. Plant Cell, 15, 481 – 494.en_US
dc.identifier.citedreferenceD'Auria, J. C., Chen, F. and Pichersky, E. ( 2002 ) Characterization of an acyltransferase capable of synthesizing benzylbenzoate and other volatile esters in flowers and damaged leaves of Clarkia breweri. Plant Physiol. 130, 466 – 476.en_US
dc.identifier.citedreferenceD'Auria, J. C., Chen, F. and Pichersky, E. ( 2003 ) The SABATH family of MTs in Arabidopsis thaliana and other plant species. In Recent Advances in Phytochemistry, Vol. 37. ( Romeo, J.T., ed.). Oxford: Elsevier Science Ltd., pp. 253 – 283.en_US
dc.identifier.citedreferenceDemirci, F., Demirci, B., Baser, K. H. C. and Guven, K. ( 2000 ) The composition and antifungal bioassay of the essential oils of different Betula species growing in Turkey. Chem. Nat. Compd. 36, 159 – 165.en_US
dc.identifier.citedreferenceDonath, J. and Boland, W. ( 1995 ) Biosynthesis of acyclic homoterpenes: enzyme selectivity and absolute configuration of the nerolidol precursor. Phytochemistry, 39, 785 – 790.en_US
dc.identifier.citedreferenceDudareva, N., Murfitt, L. M., Mann, C. J., Gorenstein, N., Kolosova, N., Kish, C. M., Bonham, C. and Wood, K. ( 2000 ) Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers. Plant Cell, 12, 949 – 961.en_US
dc.identifier.citedreferenceEngelbert, J., Koch, T., Schuler, G., Bachmann, N., Rechtenbach, J. and Boland, W. ( 2001 ) Ion channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate signaling in lima bean. Plant Physiol. 125, 369 – 377.en_US
dc.identifier.citedreferenceFrick, S. and Kutchan, T. M. ( 1999 ) Molecular cloning and functional expression of O -methyltransferases common to isoqhinoline alkaloid and phenylpropanoid biosynthesis. Plant J. 17, 329 – 339.en_US
dc.identifier.citedreferenceFukami, H., Asakura, T., Hirano, H., Abe, K., Shimomura, K. and Yamakawa, T. ( 2002 ) Salicylic acid carboxyl methyltransferase induced in hairy root cultures of Atropa belladonna after treatment with exogeneously added salicylic acid. Plant Cell Physiol. 43, 1054 – 1058.en_US
dc.identifier.citedreferenceGang, D. R., Lavid, N., Zubieta, C., Chen, F., Beuerle, T., Lewinsohn, E., Noel, J. P. and Pichersky, E. ( 2002 ) Characterization of phenylpropene O -methyltransferases from sweet basil: facile change of substrate specificity and convergent evolution within a plant OMT family. Plant Cell, 14, 505 – 519.en_US
dc.identifier.citedreferenceHajdukiewicz, P., Svab, Z. and Maliga, P. ( 1994 ) The small, versatile, pZIP family of Agrobacterium binary vectors for plant transformation. Plant Mol. Biol. 25, 989 – 994.en_US
dc.identifier.citedreferenceHunter, W. B. and Ullman, D. E. ( 1992 ) Anatomy and ultrastructure of the piercing-sucking mouthparts and paraglossal sensilla of Frankliniella occidentalis (Pergande) (Thysanoptera, Thripidae). Int. J. Insect Morph. Embryol. 21, 17 – 35.en_US
dc.identifier.citedreferenceJefferson, R. A., Kavanagh, T. A. and Bevan, M. W. ( 1987 ) Gus fusions – β -glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901 – 3907.en_US
dc.identifier.citedreferenceKnudsen, J. T., Tollsten, L. and Bergstrom, L. G. ( 1993 ) Floral scents – a checklist of volatile compounds isolated by headspace techniques. Phytochemistry, 33, 253 – 280.en_US
dc.identifier.citedreferenceKoch, M. A., Haubold, B. and Mitchell-Olds, T. ( 2000 ) Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol. Biol. Evol. 17, 1483 – 1498.en_US
dc.identifier.citedreferenceKolosova, N., Gorenstein, N., Kish, C. M. and Dudareva, N. ( 2001 ) Regulation of circadian methyl benzoate emission in diurnally and nocturnally emitting plants. Plant Cell, 13, 2333 – 2347.en_US
dc.identifier.citedreferenceLindberg, C. M., Melathopoulos, A. P. and Winston, M. L. ( 2000 ) Laboratory evaluation of miticides to control Varroa jacobsoni (Acari: Varroidae), a honey bee (Hymenoptera: Apidae) parasite. J. Econ. Entomol. 93, 189 – 198.en_US
dc.identifier.citedreferenceMurfitt, L. M., Kolosova, N., Mann, C. J. and Dudareva, N. ( 2000 ) Purification and characterization of S -adenosyl-l-methionine: benzoic acid carboxyl methyltransferase, the enzyme responsible for biosynthesis of the volatile ester methyl benzoate in flowers of Antirrhinum majus. Arch. Biochem. Biophys. 382, 145 – 151.en_US
dc.identifier.citedreferenceNegre, F., Kolosova, N., Knoll, J., Kish, C. M. and Dudareva, N. ( 2002 ) Novel S -adenosyl-l-methionine: salicylic acid carboxyl methyltransferase, an enzyme responsible for biosynthesis of methyl salicylate and methyl benzoate, is not involved in floral scent production in snapdragon flowers. Arch. Biochem. Biophys. 406, 261 – 270.en_US
dc.identifier.citedreferenceNoel, J. P., Dixon, R. A., Pichersky, E., Zubieta, C. and Ferrer, J. L. ( 2003 ) Structural, functional, and evolutionary basis for methylation of plant small molecules. In Recent Advances in Phytochemistry, Vol. 37 ( Romeo, J.T., ed.). Oxford: Elsevier Science Ltd., pp. 37 – 58.en_US
dc.identifier.citedreferencePott, M. B., Pichersky, E. and Piechulla, B. ( 2002 ) Evening specific oscillations of scent emission, SAMT enzyme activity, and SAMT mRNA in flowers of Stephanotis floribunda. J. Plant Physiol. 159, 925 – 934.en_US
dc.identifier.citedreferenceRaguso, R. A., Light, D. M. and Pichersky, E. ( 1996 ) Electroantennogram responses of Hyles lineata (Sphingidae: Lepidoptera) to volatile compounds from Clarkia breweri (Onagraceae) and other moth-pollinated flowers. J. Chem. Ecol. 22, 1735 – 1766.en_US
dc.identifier.citedreferenceRoss, J. R. ( 2002 ) S-Adenosyl-l-Methionine: Salicylic Acid Carboxyl Methyltransferase (SAMT), an Enzyme Involved in Floral Scent and Plant Defense in Clarkia Breweri. PhD Thesis. Ann Arbor: University of Michigan.en_US
dc.identifier.citedreferenceRoss, J. R., Nam, K. H., D'Auria, J. C. and Pichersky, E. ( 1999 ) S -adenosyl-l-methionine: salicylic acid carboxyl methyltransferase, an enzyme involved in floral scent production and plant defense, represents a new class of plant methyltransferases. Arch. Biochem. Biophys. 367, 9 – 16.en_US
dc.identifier.citedreferenceSeo, H. S., Song, J. T., Cheong, J. J., Lee, Y. H., Lee, Y. W., Hwang, I., Lee, J. S. and Choi, Y. D. ( 2001 ) Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses. Proc. Natl. Acad. Sci. USA, 98, 4788 – 4793.en_US
dc.identifier.citedreferenceShulaev, V., Silverman, P. and Raskin, I. ( 1997 ) Airborne signalling by methyl salicylate in plant pathogen resistance. Nature, 385, 718 – 721.en_US
dc.identifier.citedreferenceThompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. ( 1997 ) The clustalx windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res. 24, 4876 – 4882.en_US
dc.identifier.citedreferenceVan Poecke, R. M. P., Posthumus, M. A. and Dicke, M. ( 2001 ) Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: chemical, behavioral, and gene expression analysis. J. Chem. Ecol. 27, 1911 – 1928.en_US
dc.identifier.citedreferenceWang, J. and Pichersky, E. ( 1999 ) Identification of specific residues involved in substrate discrimination in two plant O -methyltransferases. Arch. Biochem. Biophys. 368, 172 – 180.en_US
dc.identifier.citedreferenceZubieta, C., Koscheski, P., Ross, J. R., Yang, Y., Pichersky, E. and Noel, J. P. ( 2003 ) Structural basis for substrate recognition in the salicylic acid carboxyl methyltransferase family. Plant Cell, 15, 1704 – 1716.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.