Show simple item record

The brachymorph mouse and the developmental-genetic basis for canalization and morphological integration

dc.contributor.authorHallgrímsson, Benedikten_US
dc.contributor.authorBrown, Jevon J. Y.en_US
dc.contributor.authorFord-Hutchinson, Alice F.en_US
dc.contributor.authorSheets, H. Daviden_US
dc.contributor.authorZelditch, Miriam Leahen_US
dc.contributor.authorJirik, Frank R.en_US
dc.date.accessioned2010-06-01T18:34:28Z
dc.date.available2010-06-01T18:34:28Z
dc.date.issued2006-01en_US
dc.identifier.citationHallgrÍmsson, Benedikt; Brown, Jevon J . Y.; Ford-Hutchinson, Alice F.; Sheets, H . David; Zelditch, Miriam L.; Jirik, Frank R. (2006). "The brachymorph mouse and the developmental-genetic basis for canalization and morphological integration." Evolution & Development 8(1): 61-73. <http://hdl.handle.net/2027.42/71779>en_US
dc.identifier.issn1520-541Xen_US
dc.identifier.issn1525-142Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71779
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=16409383&dopt=citationen_US
dc.description.abstractAlthough it is well known that many mutations influence phenotypic variability as well as the mean, the underlying mechanisms for variability effects are very poorly understood. The brachymorph ( bm ) phenotype results from an autosomal recessive mutation in the phosphoadenosine-phosphosulfate synthetase 2 gene ( Papps2 ). A major cranial manifestation is a dramatic reduction in the growth of the chondrocranium which results from undersulfation of glycosaminoglycans (GAGs) in the cartilage matrix. We found that this reduction in the growth of the chondrocranium is associated with an altered pattern of craniofacial shape variation, a significant increase in phenotypic variance and a dramatic increase in morphological integration for craniofacial shape. Both effects are largest in the basicranium. The altered variation pattern indicates that the mutation produces developmental influences on shape that are not present in the wildtype. As the mutation dramatically reduces sulfation of GAGs, we infer that this influence is variation among individuals in the degree of sulfation, or variable expressivity of the mutation. This variation may be because of genetic variation at other loci that influence sulfation, environmental effects, or intrinsic effects. We infer that chondrocranial development exhibits greater sensitivity to variation in the sulfation of chondroitin sulfate when the degree of sulfation is low. At normal levels, sulfation probably contributes minimally to phenotypic variation. This case illustrates canalization in a particular developmental-genetic context.en_US
dc.format.extent1048835 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Incen_US
dc.rights© 2006 BLACKWELL PUBLISHING, INC.en_US
dc.titleThe brachymorph mouse and the developmental-genetic basis for canalization and morphological integrationen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumMuseum of Paleontology, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherDepartment of Cell Biology & Anatomy and the Joint Injury and Arthritis Research Group ,en_US
dc.contributor.affiliationotherDepartment of Biochemistry & Molecular Biology and the Joint Injury and Arthritis Research Group, University of Calgary, 3330 Hospital Dr., Calgary, AB, Canada T2N 4N1en_US
dc.contributor.affiliationotherDepartment of Physics, Canisius College, 2001 Main Street, Buffalo, NY 14208, USAen_US
dc.identifier.pmid16409383en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71779/1/j.1525-142X.2006.05075.x.pdf
dc.identifier.doi10.1111/j.1525-142X.2006.05075.xen_US
dc.identifier.sourceEvolution & Developmenten_US
dc.identifier.citedreferenceAoyagi, Y., Fujita, N., and Tsuruo, T. 2005. Stabilization of integrin-linked kinase by binding to Hsp90. Biochem. Biophys. Res. Commun. 331: 1061 – 1068.en_US
dc.identifier.citedreferenceBergman, A., and Siegal, M. L. 2003. Evolutionary capacitance as a general feature of complex gene networks. Nature 424: 549 – 552.en_US
dc.identifier.citedreferencede Visser, J. A., et al. 2003. Perspective: evolution and detection of genetic robustness. Evolution 57: 1959 – 1972.en_US
dc.identifier.citedreferenceDebat, V., Alibert, P., David, P., Paradis, E., and Auffray, J. -C. 2000. Independence between developmental stability and canalisation in the skull of the house mouse. Proc. R. Soc. London B 267: 423 – 430.en_US
dc.identifier.citedreferenceDun, R. B., and Fraser, A. S. 1958. Selection for an invariant character—“vibrissae number”—in the house mouse. Nature 181: 1018 – 1019.en_US
dc.identifier.citedreferenceDworkin, I. 2005. Evidence for canalization of Distal-less function in the leg of Drosophila melanogaster. Evol. Dev. 7: 89 – 100.en_US
dc.identifier.citedreferenceDworkin, I., Palsson, A., Birdsall, K., and Gibson, G. 2003. Evidence that Egfr contributes to cryptic genetic variation for photoreceptor determination in natural populations of Drosophila melanogaster. Curr. Biol. 13: 1888 – 1893.en_US
dc.identifier.citedreferenceFord-Hutchinson, A., et al. 2005. Degenerative knee joint disease in mice lacking 3′-phosphoadenosine 5′-phosphosulfate synthetase 2 (Papss2) activity: a putative model of human PAPSS2 deficiency-associated arthrosis. Osteoarthritis Cartilage 13: 418 – 425.en_US
dc.identifier.citedreferenceForlino, A., et al. 2005. A diastrophic dysplasia sulfate transporter (SLC26A2) mutant mouse: morphological and biochemical characterization of the resulting chondrodysplasia phenotype. Hum. Mol. Genet. 14: 859 – 871.en_US
dc.identifier.citedreferenceGibson, G., and Hogness, D. S. 1996. Effect of polymorphism in the Drosophila regulatory gene Ultrabithorax on homeotic stability. Science 271: 200 – 203.en_US
dc.identifier.citedreferenceHallgrÍmsson, B., Dorval, C. J., Zelditch, M. L., and German, R. Z. 2004a. Craniofacial variability and morphological integration in mice susceptible to cleft lip and palate. J. Anat. 205: 501 – 517.en_US
dc.identifier.citedreferenceHallgrÍmsson, B., Willmore, K., Dorval, C., and Cooper, D. M. 2004b. Craniofacial variability and modularity in macaques and mice. J. Exp. Zool. Part B Mol. Dev. Evol. 302: 207 – 225.en_US
dc.identifier.citedreferenceHermisson, J., and Wagner, G. P. 2004. The population genetic theory of hidden variation and genetic robustness. Genetics 168: 2271 – 2284.en_US
dc.identifier.citedreferenceKangas, A. T., Evans, A. R., Thesleff, I., and Jernvall, J. 2004. Nonindependence of mammalian dental characters. Nature 432: 211 – 214.en_US
dc.identifier.citedreferenceKaufman, M. H., and Bard, J. B. L. 1999. The Anatomical Basis of Mouse Development. Academic Press, San Diego.en_US
dc.identifier.citedreferenceKlingenberg, C. P., et al. 2003. Developmental integration in a complex morphological structure: how distinct are the modules in mouse mandible? Evol. Dev. 5: 522 – 531.en_US
dc.identifier.citedreferenceKlingenberg, C. P., Barluenga, M., and Meyer, A. 2002. Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry. Evol. Int. J. Org. Evol. 56: 1909 – 1920.en_US
dc.identifier.citedreferenceKurima, K., et al. 1998. A member of a family of sulfate-activating enzymes causes murine brachymorphism. Proc. Natl. Acad. Sci. USA 95: 8681 – 8685.en_US
dc.identifier.citedreferenceLane, P. W., and Dickie, M. M. 1968. Three recessive mutations producing disproportionate dwarfing in mice: achondroplasia, brachymorphic, and stubby. J. Hered. 59: 300 – 308.en_US
dc.identifier.citedreferenceLele, S., and McCulloch, C. E. 2002. Invariance, identifiability and morphometrics. J. Am. Stat. Assoc. 97: 796 – 806.en_US
dc.identifier.citedreferenceLele, S., and Richtsmeier, J. T. 2001. An Invariant Approach to the Statistical Analysis of Shapes. Chapman & Hall, Boca Raton.en_US
dc.identifier.citedreferenceMantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Res. 27: 209 – 220.en_US
dc.identifier.citedreferenceMardia, K. V., et al. 1979. Multivariate Analysis. Academic Press, London.en_US
dc.identifier.citedreferenceMarquez, E. 2004a. MACE 3D. University of Michigan, Ann Arbor, MI.en_US
dc.identifier.citedreferenceMarquez, E. 2004b. SAGE 3D. University of Michigan, Ann Arbor, MI.en_US
dc.identifier.citedreferenceOrkin, R. W., Pratt, R. M., and Martin, G. R. ( 1976 ). Undersulfated chondroitin sulfate in the cartilage matrix of brachymorphic mice. Dev. Biol. 50: 82 – 94.en_US
dc.identifier.citedreferencePalmer, A. R. 1994. Fluctuating asymmetry analyses: a primer. In T. A. Markow (ed.). Developmental Instability: Its Origins and Evolutionary Implications. Kluwer Academic Publishers, Dordrecht, pp. 355 – 364.en_US
dc.identifier.citedreferencePalmer, A. R., and Strobeck, C. 1986. Fluctuating asymmetry: measurement, Analysis, Patterns. Ann. Rev. Ecol. Systematics 17: 391 – 421.en_US
dc.identifier.citedreferencePalmer, A. R., and Strobeck, C. 2003. Fluctuating asymmetry analysis unplugged. In M. Polak (ed.). Developmental Instability (DI): Causes and Consequences. Oxford University Press, Oxford, pp. 279 – 319.en_US
dc.identifier.citedreferenceRichtsmeier, J. T., Baxter, L. L., and Reeves, R. H. 2000. Parallels of craniofacial maldevelopment in Down syndrome and Ts65Dn mice. Dev. Dyn. 217: 137 – 145.en_US
dc.identifier.citedreferenceRuden, D. M., Xiao, L., Garfinkel, M. D., and Lu, X. 2005. Hsp90 and environmental impacts on epigenetic states: a model for the trans-generational effects of diethylstibesterol on uterine development and cancer. Hum. Mol. Genet. 14 ( Spec. No. 1 ): R149 – R155.en_US
dc.identifier.citedreferenceRutherford, S. L. 2000. From genotype to phenotype: buffering mechanisms and the storage of genetic information. Bioessays 22: 1095 – 1105.en_US
dc.identifier.citedreferenceRutherford, S. L., and Lindquist, S. 1998. Hsp90 as a capacitor for morphological evolution. Nature 396: 336 – 342.en_US
dc.identifier.citedreferenceScharloo, W. 1991. Canalization: genetic and developmental aspects. Ann. Rev. Ecol. Systematics 22: 65 – 93.en_US
dc.identifier.citedreferenceSiegal, M. L., and Bergman, A. ( 2002 ). Waddington's canalization revisited: developmental stability and evolution. Proc. Natl. Acad. Sci. USA. 99: 10528 – 10532.en_US
dc.identifier.citedreferenceSlice, D. E. 1994 – 1999. Morpheus. Stony Brook, NY.en_US
dc.identifier.citedreferenceSlice, D. E. 2005. Modern morphometrics. In D. E. Slice (ed.). Modern Morphometrics in Physical Anthropology. Kluwer, New York, pp. 1 – 45.en_US
dc.identifier.citedreferenceSrivastava, A. K., et al. 1997. The Tabby phenotype is caused by mutation in a mouse homologue of the EDA gene that reveals novel mouse and human exons and encodes a protein (ectodysplasin-A) with collagenous domains. Proc. Natl. Acad. Sci. USA 94: 13069 – 13074.en_US
dc.identifier.citedreferenceSugahara, K., and Schwartz, N. B. 1979. Defect in 3′-phosphoadenosine 5′-phosphosulfate formation in brachymorphic mice. Proc. Natl. Acad. Sci. USA. 76: 6615 – 6618.en_US
dc.identifier.citedreferenceTrotta, V., Garoia, F., Guerra, D., Pezzoli, M. C., Grifoni, D., and Cavicchi, S. 2005. Developmental instability of the Drosophila wing as an index of genomic perturbation and altered cell proliferation. Evol. Dev. 7: 234 – 243.en_US
dc.identifier.citedreferenceVan Valen, L. M. 1978. The statistics of variation. Evol. Theory 4: 33 – 43.en_US
dc.identifier.citedreferenceWaddington, C. H. 1942. The canalisation of development and the inheritance of acquired characters. Nature 150: 563.en_US
dc.identifier.citedreferenceWaddington, C. H. 1957. The Strategy of the Genes. MacMillan Company, New York.en_US
dc.identifier.citedreferenceWagner, G. P. 1989. A comparative study of morphological integration in Apis mellifera (Insecta, Hymenoptera). Z. Zool. Syst. Evol. forsch. 28: 48 – 61.en_US
dc.identifier.citedreferenceWagner, G. P. 2003. Evolutionary genetics: the nature of hidden genetic variation unveiled. Curr. Biol. 13: R958 – R960.en_US
dc.identifier.citedreferenceWagner, G. P., Booth, G., and Bagheri-Chaichian, H. 1997. A population genetic theory of canalization. Evolution 51: 329 – 347.en_US
dc.identifier.citedreferenceWilkins, A. S. 1997. Canalization: a molecular genetic perspective. Bioessays 19: 257 – 262.en_US
dc.identifier.citedreferenceWillmore, K. E., Klingenberg, C. P., and Hallgrimsson, B. 2005. The relationship between fluctuating asymmetry and environmental variance in rhesus macaque skulls. Evol. Int. J. Org. Evol. 59: 898 – 909.en_US
dc.identifier.citedreferenceXu, Z., Wood, T. C., Adjei, A. A., and Weinshilboum, R. M. 2001. Human 3′-phosphoadenosine 5′-phosphosulfate synthetase: radiochemical enzymatic assay, biochemical properties, and hepatic variation. Drug Metab. Dispos. 29: 172 – 178.en_US
dc.identifier.citedreferenceXu, Z. H., et al. 2000. Human 3′-phosphoadenosine 5′-phosphosulfate synthetase 1 (PAPSS1) and PAPSS2: gene cloning, characterization and chromosomal localization. Biochem. Biophys. Res. Commun. 268: 437 – 444.en_US
dc.identifier.citedreferenceXu, Z. H., Thomae, B. A., Eckloff, B. W., Wieben, E. D., and Weinshilboum, R. M. 2003. Pharmacogenetics of human 3′-phosphoadenosine 5′-phosphosulfate synthetase 1 (PAPSS1): gene resequencing, sequence variation, and functional genomics. Biochem. Pharmacol. 65: 1787 – 1796.en_US
dc.identifier.citedreferenceZelditch, M. L., Lundrigan, B. L., and Garland, T. 2004. Developmental regulation of skull morphology. I. Ontogenetic dynamics of variance. Evol. Dev. 6: 194 – 206.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.