The brachymorph mouse and the developmental-genetic basis for canalization and morphological integration
dc.contributor.author | Hallgrímsson, Benedikt | en_US |
dc.contributor.author | Brown, Jevon J. Y. | en_US |
dc.contributor.author | Ford-Hutchinson, Alice F. | en_US |
dc.contributor.author | Sheets, H. David | en_US |
dc.contributor.author | Zelditch, Miriam Leah | en_US |
dc.contributor.author | Jirik, Frank R. | en_US |
dc.date.accessioned | 2010-06-01T18:34:28Z | |
dc.date.available | 2010-06-01T18:34:28Z | |
dc.date.issued | 2006-01 | en_US |
dc.identifier.citation | HallgrÍmsson, Benedikt; Brown, Jevon J . Y.; Ford-Hutchinson, Alice F.; Sheets, H . David; Zelditch, Miriam L.; Jirik, Frank R. (2006). "The brachymorph mouse and the developmental-genetic basis for canalization and morphological integration." Evolution & Development 8(1): 61-73. <http://hdl.handle.net/2027.42/71779> | en_US |
dc.identifier.issn | 1520-541X | en_US |
dc.identifier.issn | 1525-142X | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/71779 | |
dc.identifier.uri | http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=16409383&dopt=citation | en_US |
dc.description.abstract | Although it is well known that many mutations influence phenotypic variability as well as the mean, the underlying mechanisms for variability effects are very poorly understood. The brachymorph ( bm ) phenotype results from an autosomal recessive mutation in the phosphoadenosine-phosphosulfate synthetase 2 gene ( Papps2 ). A major cranial manifestation is a dramatic reduction in the growth of the chondrocranium which results from undersulfation of glycosaminoglycans (GAGs) in the cartilage matrix. We found that this reduction in the growth of the chondrocranium is associated with an altered pattern of craniofacial shape variation, a significant increase in phenotypic variance and a dramatic increase in morphological integration for craniofacial shape. Both effects are largest in the basicranium. The altered variation pattern indicates that the mutation produces developmental influences on shape that are not present in the wildtype. As the mutation dramatically reduces sulfation of GAGs, we infer that this influence is variation among individuals in the degree of sulfation, or variable expressivity of the mutation. This variation may be because of genetic variation at other loci that influence sulfation, environmental effects, or intrinsic effects. We infer that chondrocranial development exhibits greater sensitivity to variation in the sulfation of chondroitin sulfate when the degree of sulfation is low. At normal levels, sulfation probably contributes minimally to phenotypic variation. This case illustrates canalization in a particular developmental-genetic context. | en_US |
dc.format.extent | 1048835 bytes | |
dc.format.extent | 3109 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | text/plain | |
dc.publisher | Blackwell Science Inc | en_US |
dc.rights | © 2006 BLACKWELL PUBLISHING, INC. | en_US |
dc.title | The brachymorph mouse and the developmental-genetic basis for canalization and morphological integration | en_US |
dc.type | Article | en_US |
dc.subject.hlbsecondlevel | Ecology and Evolutionary Biology | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Museum of Paleontology, University of Michigan, Ann Arbor, MI 48109, USA | en_US |
dc.contributor.affiliationother | Department of Cell Biology & Anatomy and the Joint Injury and Arthritis Research Group , | en_US |
dc.contributor.affiliationother | Department of Biochemistry & Molecular Biology and the Joint Injury and Arthritis Research Group, University of Calgary, 3330 Hospital Dr., Calgary, AB, Canada T2N 4N1 | en_US |
dc.contributor.affiliationother | Department of Physics, Canisius College, 2001 Main Street, Buffalo, NY 14208, USA | en_US |
dc.identifier.pmid | 16409383 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/71779/1/j.1525-142X.2006.05075.x.pdf | |
dc.identifier.doi | 10.1111/j.1525-142X.2006.05075.x | en_US |
dc.identifier.source | Evolution & Development | en_US |
dc.identifier.citedreference | Aoyagi, Y., Fujita, N., and Tsuruo, T. 2005. Stabilization of integrin-linked kinase by binding to Hsp90. Biochem. Biophys. Res. Commun. 331: 1061 – 1068. | en_US |
dc.identifier.citedreference | Bergman, A., and Siegal, M. L. 2003. Evolutionary capacitance as a general feature of complex gene networks. Nature 424: 549 – 552. | en_US |
dc.identifier.citedreference | de Visser, J. A., et al. 2003. Perspective: evolution and detection of genetic robustness. Evolution 57: 1959 – 1972. | en_US |
dc.identifier.citedreference | Debat, V., Alibert, P., David, P., Paradis, E., and Auffray, J. -C. 2000. Independence between developmental stability and canalisation in the skull of the house mouse. Proc. R. Soc. London B 267: 423 – 430. | en_US |
dc.identifier.citedreference | Dun, R. B., and Fraser, A. S. 1958. Selection for an invariant character—“vibrissae number”—in the house mouse. Nature 181: 1018 – 1019. | en_US |
dc.identifier.citedreference | Dworkin, I. 2005. Evidence for canalization of Distal-less function in the leg of Drosophila melanogaster. Evol. Dev. 7: 89 – 100. | en_US |
dc.identifier.citedreference | Dworkin, I., Palsson, A., Birdsall, K., and Gibson, G. 2003. Evidence that Egfr contributes to cryptic genetic variation for photoreceptor determination in natural populations of Drosophila melanogaster. Curr. Biol. 13: 1888 – 1893. | en_US |
dc.identifier.citedreference | Ford-Hutchinson, A., et al. 2005. Degenerative knee joint disease in mice lacking 3′-phosphoadenosine 5′-phosphosulfate synthetase 2 (Papss2) activity: a putative model of human PAPSS2 deficiency-associated arthrosis. Osteoarthritis Cartilage 13: 418 – 425. | en_US |
dc.identifier.citedreference | Forlino, A., et al. 2005. A diastrophic dysplasia sulfate transporter (SLC26A2) mutant mouse: morphological and biochemical characterization of the resulting chondrodysplasia phenotype. Hum. Mol. Genet. 14: 859 – 871. | en_US |
dc.identifier.citedreference | Gibson, G., and Hogness, D. S. 1996. Effect of polymorphism in the Drosophila regulatory gene Ultrabithorax on homeotic stability. Science 271: 200 – 203. | en_US |
dc.identifier.citedreference | HallgrÍmsson, B., Dorval, C. J., Zelditch, M. L., and German, R. Z. 2004a. Craniofacial variability and morphological integration in mice susceptible to cleft lip and palate. J. Anat. 205: 501 – 517. | en_US |
dc.identifier.citedreference | HallgrÍmsson, B., Willmore, K., Dorval, C., and Cooper, D. M. 2004b. Craniofacial variability and modularity in macaques and mice. J. Exp. Zool. Part B Mol. Dev. Evol. 302: 207 – 225. | en_US |
dc.identifier.citedreference | Hermisson, J., and Wagner, G. P. 2004. The population genetic theory of hidden variation and genetic robustness. Genetics 168: 2271 – 2284. | en_US |
dc.identifier.citedreference | Kangas, A. T., Evans, A. R., Thesleff, I., and Jernvall, J. 2004. Nonindependence of mammalian dental characters. Nature 432: 211 – 214. | en_US |
dc.identifier.citedreference | Kaufman, M. H., and Bard, J. B. L. 1999. The Anatomical Basis of Mouse Development. Academic Press, San Diego. | en_US |
dc.identifier.citedreference | Klingenberg, C. P., et al. 2003. Developmental integration in a complex morphological structure: how distinct are the modules in mouse mandible? Evol. Dev. 5: 522 – 531. | en_US |
dc.identifier.citedreference | Klingenberg, C. P., Barluenga, M., and Meyer, A. 2002. Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry. Evol. Int. J. Org. Evol. 56: 1909 – 1920. | en_US |
dc.identifier.citedreference | Kurima, K., et al. 1998. A member of a family of sulfate-activating enzymes causes murine brachymorphism. Proc. Natl. Acad. Sci. USA 95: 8681 – 8685. | en_US |
dc.identifier.citedreference | Lane, P. W., and Dickie, M. M. 1968. Three recessive mutations producing disproportionate dwarfing in mice: achondroplasia, brachymorphic, and stubby. J. Hered. 59: 300 – 308. | en_US |
dc.identifier.citedreference | Lele, S., and McCulloch, C. E. 2002. Invariance, identifiability and morphometrics. J. Am. Stat. Assoc. 97: 796 – 806. | en_US |
dc.identifier.citedreference | Lele, S., and Richtsmeier, J. T. 2001. An Invariant Approach to the Statistical Analysis of Shapes. Chapman & Hall, Boca Raton. | en_US |
dc.identifier.citedreference | Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Res. 27: 209 – 220. | en_US |
dc.identifier.citedreference | Mardia, K. V., et al. 1979. Multivariate Analysis. Academic Press, London. | en_US |
dc.identifier.citedreference | Marquez, E. 2004a. MACE 3D. University of Michigan, Ann Arbor, MI. | en_US |
dc.identifier.citedreference | Marquez, E. 2004b. SAGE 3D. University of Michigan, Ann Arbor, MI. | en_US |
dc.identifier.citedreference | Orkin, R. W., Pratt, R. M., and Martin, G. R. ( 1976 ). Undersulfated chondroitin sulfate in the cartilage matrix of brachymorphic mice. Dev. Biol. 50: 82 – 94. | en_US |
dc.identifier.citedreference | Palmer, A. R. 1994. Fluctuating asymmetry analyses: a primer. In T. A. Markow (ed.). Developmental Instability: Its Origins and Evolutionary Implications. Kluwer Academic Publishers, Dordrecht, pp. 355 – 364. | en_US |
dc.identifier.citedreference | Palmer, A. R., and Strobeck, C. 1986. Fluctuating asymmetry: measurement, Analysis, Patterns. Ann. Rev. Ecol. Systematics 17: 391 – 421. | en_US |
dc.identifier.citedreference | Palmer, A. R., and Strobeck, C. 2003. Fluctuating asymmetry analysis unplugged. In M. Polak (ed.). Developmental Instability (DI): Causes and Consequences. Oxford University Press, Oxford, pp. 279 – 319. | en_US |
dc.identifier.citedreference | Richtsmeier, J. T., Baxter, L. L., and Reeves, R. H. 2000. Parallels of craniofacial maldevelopment in Down syndrome and Ts65Dn mice. Dev. Dyn. 217: 137 – 145. | en_US |
dc.identifier.citedreference | Ruden, D. M., Xiao, L., Garfinkel, M. D., and Lu, X. 2005. Hsp90 and environmental impacts on epigenetic states: a model for the trans-generational effects of diethylstibesterol on uterine development and cancer. Hum. Mol. Genet. 14 ( Spec. No. 1 ): R149 – R155. | en_US |
dc.identifier.citedreference | Rutherford, S. L. 2000. From genotype to phenotype: buffering mechanisms and the storage of genetic information. Bioessays 22: 1095 – 1105. | en_US |
dc.identifier.citedreference | Rutherford, S. L., and Lindquist, S. 1998. Hsp90 as a capacitor for morphological evolution. Nature 396: 336 – 342. | en_US |
dc.identifier.citedreference | Scharloo, W. 1991. Canalization: genetic and developmental aspects. Ann. Rev. Ecol. Systematics 22: 65 – 93. | en_US |
dc.identifier.citedreference | Siegal, M. L., and Bergman, A. ( 2002 ). Waddington's canalization revisited: developmental stability and evolution. Proc. Natl. Acad. Sci. USA. 99: 10528 – 10532. | en_US |
dc.identifier.citedreference | Slice, D. E. 1994 – 1999. Morpheus. Stony Brook, NY. | en_US |
dc.identifier.citedreference | Slice, D. E. 2005. Modern morphometrics. In D. E. Slice (ed.). Modern Morphometrics in Physical Anthropology. Kluwer, New York, pp. 1 – 45. | en_US |
dc.identifier.citedreference | Srivastava, A. K., et al. 1997. The Tabby phenotype is caused by mutation in a mouse homologue of the EDA gene that reveals novel mouse and human exons and encodes a protein (ectodysplasin-A) with collagenous domains. Proc. Natl. Acad. Sci. USA 94: 13069 – 13074. | en_US |
dc.identifier.citedreference | Sugahara, K., and Schwartz, N. B. 1979. Defect in 3′-phosphoadenosine 5′-phosphosulfate formation in brachymorphic mice. Proc. Natl. Acad. Sci. USA. 76: 6615 – 6618. | en_US |
dc.identifier.citedreference | Trotta, V., Garoia, F., Guerra, D., Pezzoli, M. C., Grifoni, D., and Cavicchi, S. 2005. Developmental instability of the Drosophila wing as an index of genomic perturbation and altered cell proliferation. Evol. Dev. 7: 234 – 243. | en_US |
dc.identifier.citedreference | Van Valen, L. M. 1978. The statistics of variation. Evol. Theory 4: 33 – 43. | en_US |
dc.identifier.citedreference | Waddington, C. H. 1942. The canalisation of development and the inheritance of acquired characters. Nature 150: 563. | en_US |
dc.identifier.citedreference | Waddington, C. H. 1957. The Strategy of the Genes. MacMillan Company, New York. | en_US |
dc.identifier.citedreference | Wagner, G. P. 1989. A comparative study of morphological integration in Apis mellifera (Insecta, Hymenoptera). Z. Zool. Syst. Evol. forsch. 28: 48 – 61. | en_US |
dc.identifier.citedreference | Wagner, G. P. 2003. Evolutionary genetics: the nature of hidden genetic variation unveiled. Curr. Biol. 13: R958 – R960. | en_US |
dc.identifier.citedreference | Wagner, G. P., Booth, G., and Bagheri-Chaichian, H. 1997. A population genetic theory of canalization. Evolution 51: 329 – 347. | en_US |
dc.identifier.citedreference | Wilkins, A. S. 1997. Canalization: a molecular genetic perspective. Bioessays 19: 257 – 262. | en_US |
dc.identifier.citedreference | Willmore, K. E., Klingenberg, C. P., and Hallgrimsson, B. 2005. The relationship between fluctuating asymmetry and environmental variance in rhesus macaque skulls. Evol. Int. J. Org. Evol. 59: 898 – 909. | en_US |
dc.identifier.citedreference | Xu, Z., Wood, T. C., Adjei, A. A., and Weinshilboum, R. M. 2001. Human 3′-phosphoadenosine 5′-phosphosulfate synthetase: radiochemical enzymatic assay, biochemical properties, and hepatic variation. Drug Metab. Dispos. 29: 172 – 178. | en_US |
dc.identifier.citedreference | Xu, Z. H., et al. 2000. Human 3′-phosphoadenosine 5′-phosphosulfate synthetase 1 (PAPSS1) and PAPSS2: gene cloning, characterization and chromosomal localization. Biochem. Biophys. Res. Commun. 268: 437 – 444. | en_US |
dc.identifier.citedreference | Xu, Z. H., Thomae, B. A., Eckloff, B. W., Wieben, E. D., and Weinshilboum, R. M. 2003. Pharmacogenetics of human 3′-phosphoadenosine 5′-phosphosulfate synthetase 1 (PAPSS1): gene resequencing, sequence variation, and functional genomics. Biochem. Pharmacol. 65: 1787 – 1796. | en_US |
dc.identifier.citedreference | Zelditch, M. L., Lundrigan, B. L., and Garland, T. 2004. Developmental regulation of skull morphology. I. Ontogenetic dynamics of variance. Evol. Dev. 6: 194 – 206. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.