2004 ASM Conference on the New Phage Biology: the ‘Phage Summit’
dc.contributor.author | Adhya, Sankar | en_US |
dc.contributor.author | Black, Lindsay | en_US |
dc.contributor.author | Friedman, David I. | en_US |
dc.contributor.author | Hatfull, Graham | en_US |
dc.contributor.author | Kreuzer, Kenneth | en_US |
dc.contributor.author | Merril, Carl | en_US |
dc.contributor.author | Oppenheim, Amos | en_US |
dc.contributor.author | Rohwer, Forest | en_US |
dc.contributor.author | Young, R. Y. | en_US |
dc.date.accessioned | 2010-06-01T18:37:22Z | |
dc.date.available | 2010-06-01T18:37:22Z | |
dc.date.issued | 2005-03 | en_US |
dc.identifier.citation | Adhya, Sankar; Black, Lindsay; Friedman, David; Hatfull, Graham; Kreuzer, Kenneth; Merril, Carl; Oppenheim, Amos; Rohwer, Forest; Young, Ry (2005). "2004 ASM Conference on the New Phage Biology: the ‘Phage Summit’." Molecular Microbiology 55(5): 1300-1314. <http://hdl.handle.net/2027.42/71824> | en_US |
dc.identifier.issn | 0950-382X | en_US |
dc.identifier.issn | 1365-2958 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/71824 | |
dc.identifier.uri | http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15720541&dopt=citation | en_US |
dc.description.abstract | In August, more than 350 conferees from 24 countries attended the ASM Conference on the New Phage Biology, in Key Biscayne, Florida. This meeting, also called the Phage Summit, was the first major international gathering in decades devoted exclusively to phage biology. What emerged from the 5 days of the Summit was a clear perspective on the explosive resurgence of interest in all aspects of bacteriophage biology. The classic phage systems like λ and T4, reinvigorated by structural biology, bioinformatics and new molecular and cell biology tools, remain model systems of unequalled power and facility for studying fundamental biological issues. In addition, the New Phage Biology is also populated by basic and applied scientists focused on ecology, evolution, nanotechnology, bacterial pathogenesis and phage-based immunologics, therapeutics and diagnostics, resulting in a heightened interest in bacteriophages per se , rather than as a model system. Besides constituting another landmark in the long history of a field begun by d’Herelle and Twort during the early 20th century, the Summit provided a unique venue for establishment of new interactive networks for collaborative efforts between scientists of many different backgrounds, interests and expertise. | en_US |
dc.format.extent | 420812 bytes | |
dc.format.extent | 3109 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | text/plain | |
dc.publisher | Blackwell Science Ltd | en_US |
dc.rights | 2005 Blackwell Publishing Ltd | en_US |
dc.title | 2004 ASM Conference on the New Phage Biology: the ‘Phage Summit’ | en_US |
dc.type | Article | en_US |
dc.subject.hlbsecondlevel | Microbiology and Immunology | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Department of Microbiology and Immunology, University of Michigan, 5641 Medical Science Building II, Ann Arbor, MI 48109-0620, USA. | en_US |
dc.contributor.affiliationother | Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, 37 Convent Dr., Rm 5138, Bethesda, MD 20892-4264, USA. | en_US |
dc.contributor.affiliationother | Department of Biochemistry and Molecular Biology, University of Maryland Medical School, 108 N. Greene Street, Baltimore, MD 21201-1503, USA. | en_US |
dc.contributor.affiliationother | Pittsburgh Bacteriophage Institute, 4249 5th Avenue, University of Pittsburgh, Pittsburgh, PA 15260, USA. | en_US |
dc.contributor.affiliationother | Department of Biochemistry, Duke University Medical Center, Box 3711, Durham, NC 27710, USA. | en_US |
dc.contributor.affiliationother | Section on Biochemical Genetics, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA. | en_US |
dc.contributor.affiliationother | Department of Molecular Genetics and Biotechnology, The Hebrew University – Hadassah Medical School, PO Box 12272, Ein Karem, Jerusalem, Israel 91120. | en_US |
dc.contributor.affiliationother | Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182-4614, USA. | en_US |
dc.contributor.affiliationother | Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA. | en_US |
dc.identifier.pmid | 15720541 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/71824/1/j.1365-2958.2005.04509.x.pdf | |
dc.identifier.doi | 10.1111/j.1365-2958.2005.04509.x | en_US |
dc.identifier.source | Molecular Microbiology | en_US |
dc.identifier.citedreference | Abrescia, N. G., Cockburn, J. J., Grimes, J. M., Sutton, G. C., Diprose, J. M., Butcher, S. J., et al. ( 2004 ) Insights into assembly from structural analysis of bacteriophage PRD1. Nature 432: 68 – 74. | en_US |
dc.identifier.citedreference | Amitsur, M., Benjamin, S., Rosner, R., Chapman-Shimshoni, D., Meidler, R., Blanga, S., and Kaufmann, G. ( 2003 ) Bacteriophage T4-encoded Stp can be replaced as activator of anticodon nuclease by a normal host cell metabolite. Mol Microbiol 50: 129 – 143. | en_US |
dc.identifier.citedreference | Atsumi, S., and Little, J. W. ( 2004 ) Regulatory circuit design and evolution using phage lambda. Genes Dev 18: 2086 – 2094. | en_US |
dc.identifier.citedreference | Bebenek, A., Carver, G. T., Dressman, H. K., Kadyrov, F. A., Haseman, J. K., Petrov, V., et al. ( 2002 ) Dissecting the fidelity of bacteriophage RB69 DNA polymerase: site-specific modulation of fidelity by polymerase accessory proteins. Genetics 162: 1003 – 1018. | en_US |
dc.identifier.citedreference | Bertani, G. ( 1951 ) Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62: 293 – 300. | en_US |
dc.identifier.citedreference | Bertani, G. ( 2004 ) Lysogeny at mid-twentieth century: P1, P2, and other experimental systems. J Bacteriol 186: 595 – 600. | en_US |
dc.identifier.citedreference | Blanco, L., and Salas, M. ( 1996 ) Relating structure to function in φ29 DNA polymerase. J Biol Chem 271: 8509 – 8512. | en_US |
dc.identifier.citedreference | Boldt, J. L., Pinilla, C., and Segall, A. M. ( 2004 ) Reversible inhibitors of lambda integrase-mediated recombination efficiently trap Holliday junction intermediates and form the basis of a novel assay for junction resolution. J Biol Chem 279: 3472 – 3483. | en_US |
dc.identifier.citedreference | Brockstedt, D. G., Giedlin, M. A., Leong, M. L., Bahjat, K. S., Gao, Y., Luckett, W., et al. ( 2004 ) Listeria -based cancer vaccines that segregate immunogenicity from toxicity. Proc Natl Acad Sci USA 101: 13832 – 13837. | en_US |
dc.identifier.citedreference | Callen, B. P., Shearwin, K. E., and Egan, J. B. ( 2004 ) Transcriptional interference between convergent promoters caused by elongation over the promoter. Mol Cell 14: 647 – 656. | en_US |
dc.identifier.citedreference | Cassell, G. D., and Segall, A. M. ( 2003 ) Mechanism of inhibition of site-specific recombination by the Holliday junction-trapping peptide WKHYNY: insights into phage lambda integrase-mediated strand exchange. J Mol Biol 327: 413 – 429. | en_US |
dc.identifier.citedreference | Cassell, G., Klemm, M., Pinilla, C., and Segall, A. ( 2000 ) Dissection of bacteriophage lambda site-specific recombination using synthetic peptide combinatorial libraries. J Mol Biol 299: 1193 – 1202. | en_US |
dc.identifier.citedreference | Chastain, P. D., Makhov, A. M., Nossal, N. G., and Griffith, J. ( 2003 ) Architecture of the replication complex and DNA loops at the fork generated by the bacteriophage T4 proteins. J Biol Chem 278: 21276 – 21285. | en_US |
dc.identifier.citedreference | Clark, J. R., and March, J. B. ( 2004 ) Bacterial viruses as human vaccines? Expert Rev Vaccines 3: 463 – 476. | en_US |
dc.identifier.citedreference | Cockburn, J. J., Abrescia, N. G., Grimes, J. M., Sutton, G. C., Diprose, J. M., Benevides, J. M., et al. ( 2004 ) Membrane structure and interactions with protein and DNA in bacteriophage PRD1. Nature 432: 122 – 125. | en_US |
dc.identifier.citedreference | Costantino, N., and Court, D. L. ( 2003 ) Enhanced levels of lambda Red-mediated recombinants in mismatch repair mutants. Proc Natl Acad Sci USA 100: 15748 – 15753. | en_US |
dc.identifier.citedreference | Court, D. L., Sawitzke, J. A., and Thomason, L. C. ( 2002 ) Genetic engineering using homologous recombination. Annu Rev Genet 36: 361 – 388. | en_US |
dc.identifier.citedreference | Das, A., Garcia, M. J., Jana, N., Lazinski, D., Michaud, G., Sengupta, S., and Zhang, Z. ( 2003 ) Genetic and biochemical strategies to elucidate the architecture and targets of a processive transcription antiterminator from bacteriophage lambda. Meth Enzymol 371: 438 – 459. | en_US |
dc.identifier.citedreference | Davydova, E. K., and Rothman-Denes, L. B. ( 2003 ) Escherichia coli single-stranded DNA-binding protein mediates template recycling during transcription by bacteriophage N4 virion RNA polymerase. Proc Natl Acad Sci USA 100: 9250 – 9255. | en_US |
dc.identifier.citedreference | Doulatov, S., Hodes, A., Dai, L., Mandhana, N., Liu, M., Deora, R., et al. ( 2004 ) Tropism switching in Bordetella bacteriophage defines a family of diversity-generating retroelements. Nature 431: 476 – 481. | en_US |
dc.identifier.citedreference | Edgar, R., Chattoraj, D. K., and Yarmolinsky, M. ( 2001 ) Pairing of P1 plasmid partition sites by ParB. Mol Microbiol 42: 1363 – 1370. | en_US |
dc.identifier.citedreference | Endy, D., Kong, D., and Yin, J. ( 1997 ) Intracellular kinetics of a growing virus: a genetically structured simulation for bacteriophage T7. Biotechnol Bioeng 55: 375 – 389. | en_US |
dc.identifier.citedreference | Endy, D., You, L., Yin, J., and Molineux, I. J. ( 2000 ) Computation, prediction, and experimental tests of fitness for bacteriophage T7 mutants with permuted genomes. Proc Natl Acad Sci USA 97: 5375 – 5380. | en_US |
dc.identifier.citedreference | Garcia, P., Rodriguez, I., and Suarez, J. E. ( 2004 ) A −1 ribosomal frameshift in the transcript that encodes the major head protein of bacteriophage A2 mediates biosynthesis of a second essential component of the capsid. J Bacteriol 186: 1714 – 1719. | en_US |
dc.identifier.citedreference | Hendrix, R. W. ( 2002 ) Bacteriophages: evolution of the majority. Theor Popul Biol 61: 471 – 480. | en_US |
dc.identifier.citedreference | Huang, W. M., Joss, L., Hsieh, T., and Casjens, S. ( 2004 ) Protelomerase uses a topoisomerase IB/Y-recombinase type mechanism to generate DNA hairpin ends. J Mol Biol 337: 77 – 92. | en_US |
dc.identifier.citedreference | Hyman, P., Valluzzi, R., and Goldberg, E. ( 2002 ) Design of protein struts for self-assembling nanoconstructs. Proc Natl Acad Sci USA 99: 8488 – 8493. | en_US |
dc.identifier.citedreference | Kamtekar, S., Berman, A. J., Wang, J., Lazaro, J. M., de Vega, M., Blanco, L., Salas, M., and Steitz, T. A. ( 2004 ) Insights into strand displacement and processivity from the crystal structure of the protein-primed DNA polymerase of bacteriophage φ29. Molec. Cell 16: 609 – 618. | en_US |
dc.identifier.citedreference | Kazmierczak, K. M., Davydova, E. K., Mustaev, A. A., and Rothman-Denes, L. B. ( 2002 ) The phage N4 virion RNA polymerase catalytic domain is related to single-subunit RNA polymerases. EMBO J 21: 5815 – 5823. | en_US |
dc.identifier.citedreference | Kimsey, H. H., and Waldor, M. K. ( 2004 ) The CTXphi repressor RstR binds DNA cooperatively to form tetrameric repressor–operator complexes. J Biol Chem 279: 2640 – 2647. | en_US |
dc.identifier.citedreference | King, R. A., Banik-Maiti, S., Jin, D. J., and Weisberg, R. A. ( 1996 ) Transcripts that increase the processivity and elongation rate of RNA polymerase. Cell 87: 893 – 903. | en_US |
dc.identifier.citedreference | Landthaler, M., Lau, N. C., and Shub, D. A. ( 2004 ) Group I intron homing in Bacillus phages SPO1 and SP82: a gene conversion event initiated by a nicking homing endonuclease. J Bacteriol 186: 4307 – 4314. | en_US |
dc.identifier.citedreference | Lauer, P., Chow, M. Y., Loessner, M. J., Portnoy, D. A., and Calendar, R. ( 2002 ) Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J Bacteriol 184: 4177 – 4186. | en_US |
dc.identifier.citedreference | Leiman, P. G., Chipman, P. R., Kostyuchenko, V. A., Mesyanzhinov, V. V., and Rossmann, M. G. ( 2004 ) Three-dimensional rearrangement of proteins in the tail of bacteriophage T4 on infection of its host. Cell 118: 419 – 429. | en_US |
dc.identifier.citedreference | Little, J. W., Shepley, D. P., and Wert, D. W. ( 1999 ) Robustness of a gene regulatory circuit. EMBO J 18: 4299 – 4307. | en_US |
dc.identifier.citedreference | Livny, J., and Friedman, D. I. ( 2004 ) Characterizing spontaneous induction of Stx encoding phages using a selectable reporter system. Mol Microbiol 51: 1691 – 1704. | en_US |
dc.identifier.citedreference | Manna, D., Breier, A. M., and Higgins, N. P. ( 2004 ) Microarray analysis of transposition targets in Escherichia coli: the impact of transcription. Proc Natl Acad Sci USA 101: 9780 – 9785. | en_US |
dc.identifier.citedreference | Merril, C. R., Biswas, B., Carlton, R., Jensen, N. C., Creed, G. J., Zullo, S., and Adhya, S. ( 1996 ) Long-circulating bacteriophage as antibacterial agents. Proc Natl Acad Sci USA 93: 3188 – 3192. | en_US |
dc.identifier.citedreference | Merril, C. R., Scholl, D., and Adhya, S. L. ( 2003 ) The prospect for bacteriophage therapy in Western medicine. Nat Rev Drug Discov 2: 489 – 497. | en_US |
dc.identifier.citedreference | Millard, A., Clokie, M. R. J., Shub, D. A., and Mann, N. H. ( 2004 ) Genetic organization of the psbAD region in phages infecting marine Synechococcus strains. Proc Natl Acad Sci USA 101: 11007 – 11012. | en_US |
dc.identifier.citedreference | Nilsson, A. S., and HaggÅrd-Ljungquist, E. ( 2001 ) Detection of homologous recombination among bacteriophage P2 Relatives. Mol Phylogenet Evol 21: 259 – 269. | en_US |
dc.identifier.citedreference | Nilsson, A. S., Karlsson, J. L., and Haggard-Ljungquist, E. ( 2004 ) Site-specific recombination links the evolution of P2-like coliphages and pathogenic enterobacteria. Mol Biol Evol 21: 1 – 13. | en_US |
dc.identifier.citedreference | Ochman, H., and Selander, R. K. ( 1984 ) Standard reference strains of Escherichia coli from natural populations. J Bacteriol 157: 690 – 693. | en_US |
dc.identifier.citedreference | Pedulla, M. L., Ford, M. E., Houtz, J. M., Karthikeyan, T., Wadsworth, C., Lewis, J. A., et al. ( 2003 ) Origins of highly mosaic mycobacteriophage genomes. Cell 113: 171 – 182. | en_US |
dc.identifier.citedreference | Prangishvili, D. ( 2003 ) Evolutionary insights from studies on viruses of hyperthermophilic archaea. Res Microbiol 154: 289 – 294. | en_US |
dc.identifier.citedreference | Prangishvili, D., and Garrett, R. A. ( 2004 ) Exceptionally diverse morphotypes and genomes of crenarchaeal hyperthermophilic viruses. Biochem Soc Trans 32: 204 – 208. | en_US |
dc.identifier.citedreference | Qu, Y., Hyman, P., Harrah, T., and Goldberg, E. B. ( 2004 ) In vivo bypass of chaperone by extended coiled-coil motif in T4 tail fiber. J Bacteriol 186: 8363 – 8369. | en_US |
dc.identifier.citedreference | Rabinovitch, A., Aviram, I., and Zaritsky, A. ( 2003 ) Bacterial debris – an ecological mechanism for coexistence of bacteria and their viruses. J Theor Biol 224: 377 – 383. | en_US |
dc.identifier.citedreference | Semenova, E., Djordjevic, M., Shraiman, B., and Severinov, K. ( 2004 ) The tale of two RNA polymerases: transcription profiling and gene expression strategy of bacteriophage Xp10. Mol Microbiol. doi:10.1111/j.1365-2958.2004.04442.x | en_US |
dc.identifier.citedreference | Sen, R., King, R. A., and Weisberg, R. A. ( 2001 ) Modification of the properties of elongating RNA polymerase by persistent association with nascent antiterminator RNA. Mol Cell 7: 993 – 1001. | en_US |
dc.identifier.citedreference | Shcherbakov, V., Granovsky, I., Plugina, L., Shcherbakova, T., Sizova, S., Pyatkov, K., et al. ( 2002 ) Focused genetic recombination of bacteriophage T4 initiated by double-strand breaks. Genetics 162: 543 – 556. | en_US |
dc.identifier.citedreference | Stohr, B. A., and Kreuzer, K. N. ( 2002 ) Coordination of DNA ends during double-strand-break repair in bacteriophage T4. Genetics 162: 1019 – 1030. | en_US |
dc.identifier.citedreference | Sullivan, M. B., Waterbury, J. B., and Chisholm, S. W. ( 2003 ) Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature 424: 1047 – 1051. | en_US |
dc.identifier.citedreference | Sumby, P., and Smith, M. C. ( 2002 ) Genetics of the phage growth limitation (Pgl) system of Streptomyces coelicolor A3(2). Mol Microbiol 44: 489 – 500. | en_US |
dc.identifier.citedreference | Summer, E. J., Gonzalez, C. F., Carlisle, T., Mebane, L. M., Cass, A. M., Savva, C. G., et al. ( 2004 ) Burkholderia cenocepacia phage BcepMu and a family of Mu-like phages encoding potential pathogenesis factors. J Mol Biol 340: 49 – 65. | en_US |
dc.identifier.citedreference | Wagner, P. L., Neely, M. N., Zhang, X., Acheson, D. W., Waldor, M. K., and Friedman, D. I. ( 2001 ) Role for a phage promoter in Shiga toxin 2 expression from a pathogenic Escherichia coli strain. J Bacteriol 183: 2081 – 2085. | en_US |
dc.identifier.citedreference | Waldor, M. K., and Mekalanos, J. J. ( 1996 ) Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272: 1910 – 1914. | en_US |
dc.identifier.citedreference | Wiedenheft, B., Stedman, K., Roberto, F., Willits, D., Gleske, A. K., Zoeller, L., et al. ( 2004 ) Comparative genomic analysis of hyperthermophilic archaeal Fuselloviridae viruses. J Virol 78: 1954 – 1961. | en_US |
dc.identifier.citedreference | Wommack, K. E., and Colwell, R. R. ( 2000 ) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64: 69 – 114. | en_US |
dc.identifier.citedreference | Zimmer, M., Sattelberger, E., Inman, R. B., Calendar, R., and Loessner, M. J. ( 2003 ) Genome and proteome of Listeria monocytogenes phage PSA: an unusual case for programmed +1 translational frameshifting in structural protein synthesis. Mol Microbiol 50: 303 – 317. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.