Show simple item record

2004 ASM Conference on the New Phage Biology: the ‘Phage Summit’

dc.contributor.authorAdhya, Sankaren_US
dc.contributor.authorBlack, Lindsayen_US
dc.contributor.authorFriedman, David I.en_US
dc.contributor.authorHatfull, Grahamen_US
dc.contributor.authorKreuzer, Kennethen_US
dc.contributor.authorMerril, Carlen_US
dc.contributor.authorOppenheim, Amosen_US
dc.contributor.authorRohwer, Foresten_US
dc.contributor.authorYoung, R. Y.en_US
dc.date.accessioned2010-06-01T18:37:22Z
dc.date.available2010-06-01T18:37:22Z
dc.date.issued2005-03en_US
dc.identifier.citationAdhya, Sankar; Black, Lindsay; Friedman, David; Hatfull, Graham; Kreuzer, Kenneth; Merril, Carl; Oppenheim, Amos; Rohwer, Forest; Young, Ry (2005). "2004 ASM Conference on the New Phage Biology: the ‘Phage Summit’." Molecular Microbiology 55(5): 1300-1314. <http://hdl.handle.net/2027.42/71824>en_US
dc.identifier.issn0950-382Xen_US
dc.identifier.issn1365-2958en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71824
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15720541&dopt=citationen_US
dc.description.abstractIn August, more than 350 conferees from 24 countries attended the ASM Conference on the New Phage Biology, in Key Biscayne, Florida. This meeting, also called the Phage Summit, was the first major international gathering in decades devoted exclusively to phage biology. What emerged from the 5 days of the Summit was a clear perspective on the explosive resurgence of interest in all aspects of bacteriophage biology. The classic phage systems like λ and T4, reinvigorated by structural biology, bioinformatics and new molecular and cell biology tools, remain model systems of unequalled power and facility for studying fundamental biological issues. In addition, the New Phage Biology is also populated by basic and applied scientists focused on ecology, evolution, nanotechnology, bacterial pathogenesis and phage-based immunologics, therapeutics and diagnostics, resulting in a heightened interest in bacteriophages per se , rather than as a model system. Besides constituting another landmark in the long history of a field begun by d’Herelle and Twort during the early 20th century, the Summit provided a unique venue for establishment of new interactive networks for collaborative efforts between scientists of many different backgrounds, interests and expertise.en_US
dc.format.extent420812 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2005 Blackwell Publishing Ltden_US
dc.title2004 ASM Conference on the New Phage Biology: the ‘Phage Summit’en_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Microbiology and Immunology, University of Michigan, 5641 Medical Science Building II, Ann Arbor, MI 48109-0620, USA.en_US
dc.contributor.affiliationotherLaboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, 37 Convent Dr., Rm 5138, Bethesda, MD 20892-4264, USA.en_US
dc.contributor.affiliationotherDepartment of Biochemistry and Molecular Biology, University of Maryland Medical School, 108 N. Greene Street, Baltimore, MD 21201-1503, USA.en_US
dc.contributor.affiliationotherPittsburgh Bacteriophage Institute, 4249 5th Avenue, University of Pittsburgh, Pittsburgh, PA 15260, USA.en_US
dc.contributor.affiliationotherDepartment of Biochemistry, Duke University Medical Center, Box 3711, Durham, NC 27710, USA.en_US
dc.contributor.affiliationotherSection on Biochemical Genetics, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA.en_US
dc.contributor.affiliationotherDepartment of Molecular Genetics and Biotechnology, The Hebrew University – Hadassah Medical School, PO Box 12272, Ein Karem, Jerusalem, Israel 91120.en_US
dc.contributor.affiliationotherDepartment of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182-4614, USA.en_US
dc.contributor.affiliationotherDepartment of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA.en_US
dc.identifier.pmid15720541en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71824/1/j.1365-2958.2005.04509.x.pdf
dc.identifier.doi10.1111/j.1365-2958.2005.04509.xen_US
dc.identifier.sourceMolecular Microbiologyen_US
dc.identifier.citedreferenceAbrescia, N. G., Cockburn, J. J., Grimes, J. M., Sutton, G. C., Diprose, J. M., Butcher, S. J., et al. ( 2004 ) Insights into assembly from structural analysis of bacteriophage PRD1. Nature 432: 68 – 74.en_US
dc.identifier.citedreferenceAmitsur, M., Benjamin, S., Rosner, R., Chapman-Shimshoni, D., Meidler, R., Blanga, S., and Kaufmann, G. ( 2003 ) Bacteriophage T4-encoded Stp can be replaced as activator of anticodon nuclease by a normal host cell metabolite. Mol Microbiol 50: 129 – 143.en_US
dc.identifier.citedreferenceAtsumi, S., and Little, J. W. ( 2004 ) Regulatory circuit design and evolution using phage lambda. Genes Dev 18: 2086 – 2094.en_US
dc.identifier.citedreferenceBebenek, A., Carver, G. T., Dressman, H. K., Kadyrov, F. A., Haseman, J. K., Petrov, V., et al. ( 2002 ) Dissecting the fidelity of bacteriophage RB69 DNA polymerase: site-specific modulation of fidelity by polymerase accessory proteins. Genetics 162: 1003 – 1018.en_US
dc.identifier.citedreferenceBertani, G. ( 1951 ) Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62: 293 – 300.en_US
dc.identifier.citedreferenceBertani, G. ( 2004 ) Lysogeny at mid-twentieth century: P1, P2, and other experimental systems. J Bacteriol 186: 595 – 600.en_US
dc.identifier.citedreferenceBlanco, L., and Salas, M. ( 1996 ) Relating structure to function in φ29 DNA polymerase. J Biol Chem 271: 8509 – 8512.en_US
dc.identifier.citedreferenceBoldt, J. L., Pinilla, C., and Segall, A. M. ( 2004 ) Reversible inhibitors of lambda integrase-mediated recombination efficiently trap Holliday junction intermediates and form the basis of a novel assay for junction resolution. J Biol Chem 279: 3472 – 3483.en_US
dc.identifier.citedreferenceBrockstedt, D. G., Giedlin, M. A., Leong, M. L., Bahjat, K. S., Gao, Y., Luckett, W., et al. ( 2004 ) Listeria -based cancer vaccines that segregate immunogenicity from toxicity. Proc Natl Acad Sci USA 101: 13832 – 13837.en_US
dc.identifier.citedreferenceCallen, B. P., Shearwin, K. E., and Egan, J. B. ( 2004 ) Transcriptional interference between convergent promoters caused by elongation over the promoter. Mol Cell 14: 647 – 656.en_US
dc.identifier.citedreferenceCassell, G. D., and Segall, A. M. ( 2003 ) Mechanism of inhibition of site-specific recombination by the Holliday junction-trapping peptide WKHYNY: insights into phage lambda integrase-mediated strand exchange. J Mol Biol 327: 413 – 429.en_US
dc.identifier.citedreferenceCassell, G., Klemm, M., Pinilla, C., and Segall, A. ( 2000 ) Dissection of bacteriophage lambda site-specific recombination using synthetic peptide combinatorial libraries. J Mol Biol 299: 1193 – 1202.en_US
dc.identifier.citedreferenceChastain, P. D., Makhov, A. M., Nossal, N. G., and Griffith, J. ( 2003 ) Architecture of the replication complex and DNA loops at the fork generated by the bacteriophage T4 proteins. J Biol Chem 278: 21276 – 21285.en_US
dc.identifier.citedreferenceClark, J. R., and March, J. B. ( 2004 ) Bacterial viruses as human vaccines? Expert Rev Vaccines 3: 463 – 476.en_US
dc.identifier.citedreferenceCockburn, J. J., Abrescia, N. G., Grimes, J. M., Sutton, G. C., Diprose, J. M., Benevides, J. M., et al. ( 2004 ) Membrane structure and interactions with protein and DNA in bacteriophage PRD1. Nature 432: 122 – 125.en_US
dc.identifier.citedreferenceCostantino, N., and Court, D. L. ( 2003 ) Enhanced levels of lambda Red-mediated recombinants in mismatch repair mutants. Proc Natl Acad Sci USA 100: 15748 – 15753.en_US
dc.identifier.citedreferenceCourt, D. L., Sawitzke, J. A., and Thomason, L. C. ( 2002 ) Genetic engineering using homologous recombination. Annu Rev Genet 36: 361 – 388.en_US
dc.identifier.citedreferenceDas, A., Garcia, M. J., Jana, N., Lazinski, D., Michaud, G., Sengupta, S., and Zhang, Z. ( 2003 ) Genetic and biochemical strategies to elucidate the architecture and targets of a processive transcription antiterminator from bacteriophage lambda. Meth Enzymol 371: 438 – 459.en_US
dc.identifier.citedreferenceDavydova, E. K., and Rothman-Denes, L. B. ( 2003 ) Escherichia coli single-stranded DNA-binding protein mediates template recycling during transcription by bacteriophage N4 virion RNA polymerase. Proc Natl Acad Sci USA 100: 9250 – 9255.en_US
dc.identifier.citedreferenceDoulatov, S., Hodes, A., Dai, L., Mandhana, N., Liu, M., Deora, R., et al. ( 2004 ) Tropism switching in Bordetella bacteriophage defines a family of diversity-generating retroelements. Nature 431: 476 – 481.en_US
dc.identifier.citedreferenceEdgar, R., Chattoraj, D. K., and Yarmolinsky, M. ( 2001 ) Pairing of P1 plasmid partition sites by ParB. Mol Microbiol 42: 1363 – 1370.en_US
dc.identifier.citedreferenceEndy, D., Kong, D., and Yin, J. ( 1997 ) Intracellular kinetics of a growing virus: a genetically structured simulation for bacteriophage T7. Biotechnol Bioeng 55: 375 – 389.en_US
dc.identifier.citedreferenceEndy, D., You, L., Yin, J., and Molineux, I. J. ( 2000 ) Computation, prediction, and experimental tests of fitness for bacteriophage T7 mutants with permuted genomes. Proc Natl Acad Sci USA 97: 5375 – 5380.en_US
dc.identifier.citedreferenceGarcia, P., Rodriguez, I., and Suarez, J. E. ( 2004 ) A −1 ribosomal frameshift in the transcript that encodes the major head protein of bacteriophage A2 mediates biosynthesis of a second essential component of the capsid. J Bacteriol 186: 1714 – 1719.en_US
dc.identifier.citedreferenceHendrix, R. W. ( 2002 ) Bacteriophages: evolution of the majority. Theor Popul Biol 61: 471 – 480.en_US
dc.identifier.citedreferenceHuang, W. M., Joss, L., Hsieh, T., and Casjens, S. ( 2004 ) Protelomerase uses a topoisomerase IB/Y-recombinase type mechanism to generate DNA hairpin ends. J Mol Biol 337: 77 – 92.en_US
dc.identifier.citedreferenceHyman, P., Valluzzi, R., and Goldberg, E. ( 2002 ) Design of protein struts for self-assembling nanoconstructs. Proc Natl Acad Sci USA 99: 8488 – 8493.en_US
dc.identifier.citedreferenceKamtekar, S., Berman, A. J., Wang, J., Lazaro, J. M., de Vega, M., Blanco, L., Salas, M., and Steitz, T. A. ( 2004 ) Insights into strand displacement and processivity from the crystal structure of the protein-primed DNA polymerase of bacteriophage φ29. Molec. Cell 16: 609 – 618.en_US
dc.identifier.citedreferenceKazmierczak, K. M., Davydova, E. K., Mustaev, A. A., and Rothman-Denes, L. B. ( 2002 ) The phage N4 virion RNA polymerase catalytic domain is related to single-subunit RNA polymerases. EMBO J 21: 5815 – 5823.en_US
dc.identifier.citedreferenceKimsey, H. H., and Waldor, M. K. ( 2004 ) The CTXphi repressor RstR binds DNA cooperatively to form tetrameric repressor–operator complexes. J Biol Chem 279: 2640 – 2647.en_US
dc.identifier.citedreferenceKing, R. A., Banik-Maiti, S., Jin, D. J., and Weisberg, R. A. ( 1996 ) Transcripts that increase the processivity and elongation rate of RNA polymerase. Cell 87: 893 – 903.en_US
dc.identifier.citedreferenceLandthaler, M., Lau, N. C., and Shub, D. A. ( 2004 ) Group I intron homing in Bacillus phages SPO1 and SP82: a gene conversion event initiated by a nicking homing endonuclease. J Bacteriol 186: 4307 – 4314.en_US
dc.identifier.citedreferenceLauer, P., Chow, M. Y., Loessner, M. J., Portnoy, D. A., and Calendar, R. ( 2002 ) Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J Bacteriol 184: 4177 – 4186.en_US
dc.identifier.citedreferenceLeiman, P. G., Chipman, P. R., Kostyuchenko, V. A., Mesyanzhinov, V. V., and Rossmann, M. G. ( 2004 ) Three-dimensional rearrangement of proteins in the tail of bacteriophage T4 on infection of its host. Cell 118: 419 – 429.en_US
dc.identifier.citedreferenceLittle, J. W., Shepley, D. P., and Wert, D. W. ( 1999 ) Robustness of a gene regulatory circuit. EMBO J 18: 4299 – 4307.en_US
dc.identifier.citedreferenceLivny, J., and Friedman, D. I. ( 2004 ) Characterizing spontaneous induction of Stx encoding phages using a selectable reporter system. Mol Microbiol 51: 1691 – 1704.en_US
dc.identifier.citedreferenceManna, D., Breier, A. M., and Higgins, N. P. ( 2004 ) Microarray analysis of transposition targets in Escherichia coli: the impact of transcription. Proc Natl Acad Sci USA 101: 9780 – 9785.en_US
dc.identifier.citedreferenceMerril, C. R., Biswas, B., Carlton, R., Jensen, N. C., Creed, G. J., Zullo, S., and Adhya, S. ( 1996 ) Long-circulating bacteriophage as antibacterial agents. Proc Natl Acad Sci USA 93: 3188 – 3192.en_US
dc.identifier.citedreferenceMerril, C. R., Scholl, D., and Adhya, S. L. ( 2003 ) The prospect for bacteriophage therapy in Western medicine. Nat Rev Drug Discov 2: 489 – 497.en_US
dc.identifier.citedreferenceMillard, A., Clokie, M. R. J., Shub, D. A., and Mann, N. H. ( 2004 ) Genetic organization of the psbAD region in phages infecting marine Synechococcus strains. Proc Natl Acad Sci USA 101: 11007 – 11012.en_US
dc.identifier.citedreferenceNilsson, A. S., and HaggÅrd-Ljungquist, E. ( 2001 ) Detection of homologous recombination among bacteriophage P2 Relatives. Mol Phylogenet Evol 21: 259 – 269.en_US
dc.identifier.citedreferenceNilsson, A. S., Karlsson, J. L., and Haggard-Ljungquist, E. ( 2004 ) Site-specific recombination links the evolution of P2-like coliphages and pathogenic enterobacteria. Mol Biol Evol 21: 1 – 13.en_US
dc.identifier.citedreferenceOchman, H., and Selander, R. K. ( 1984 ) Standard reference strains of Escherichia coli from natural populations. J Bacteriol 157: 690 – 693.en_US
dc.identifier.citedreferencePedulla, M. L., Ford, M. E., Houtz, J. M., Karthikeyan, T., Wadsworth, C., Lewis, J. A., et al. ( 2003 ) Origins of highly mosaic mycobacteriophage genomes. Cell 113: 171 – 182.en_US
dc.identifier.citedreferencePrangishvili, D. ( 2003 ) Evolutionary insights from studies on viruses of hyperthermophilic archaea. Res Microbiol 154: 289 – 294.en_US
dc.identifier.citedreferencePrangishvili, D., and Garrett, R. A. ( 2004 ) Exceptionally diverse morphotypes and genomes of crenarchaeal hyperthermophilic viruses. Biochem Soc Trans 32: 204 – 208.en_US
dc.identifier.citedreferenceQu, Y., Hyman, P., Harrah, T., and Goldberg, E. B. ( 2004 ) In vivo bypass of chaperone by extended coiled-coil motif in T4 tail fiber. J Bacteriol 186: 8363 – 8369.en_US
dc.identifier.citedreferenceRabinovitch, A., Aviram, I., and Zaritsky, A. ( 2003 ) Bacterial debris – an ecological mechanism for coexistence of bacteria and their viruses. J Theor Biol 224: 377 – 383.en_US
dc.identifier.citedreferenceSemenova, E., Djordjevic, M., Shraiman, B., and Severinov, K. ( 2004 ) The tale of two RNA polymerases: transcription profiling and gene expression strategy of bacteriophage Xp10. Mol Microbiol. doi:10.1111/j.1365-2958.2004.04442.xen_US
dc.identifier.citedreferenceSen, R., King, R. A., and Weisberg, R. A. ( 2001 ) Modification of the properties of elongating RNA polymerase by persistent association with nascent antiterminator RNA. Mol Cell 7: 993 – 1001.en_US
dc.identifier.citedreferenceShcherbakov, V., Granovsky, I., Plugina, L., Shcherbakova, T., Sizova, S., Pyatkov, K., et al. ( 2002 ) Focused genetic recombination of bacteriophage T4 initiated by double-strand breaks. Genetics 162: 543 – 556.en_US
dc.identifier.citedreferenceStohr, B. A., and Kreuzer, K. N. ( 2002 ) Coordination of DNA ends during double-strand-break repair in bacteriophage T4. Genetics 162: 1019 – 1030.en_US
dc.identifier.citedreferenceSullivan, M. B., Waterbury, J. B., and Chisholm, S. W. ( 2003 ) Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature 424: 1047 – 1051.en_US
dc.identifier.citedreferenceSumby, P., and Smith, M. C. ( 2002 ) Genetics of the phage growth limitation (Pgl) system of Streptomyces coelicolor A3(2). Mol Microbiol 44: 489 – 500.en_US
dc.identifier.citedreferenceSummer, E. J., Gonzalez, C. F., Carlisle, T., Mebane, L. M., Cass, A. M., Savva, C. G., et al. ( 2004 ) Burkholderia cenocepacia phage BcepMu and a family of Mu-like phages encoding potential pathogenesis factors. J Mol Biol 340: 49 – 65.en_US
dc.identifier.citedreferenceWagner, P. L., Neely, M. N., Zhang, X., Acheson, D. W., Waldor, M. K., and Friedman, D. I. ( 2001 ) Role for a phage promoter in Shiga toxin 2 expression from a pathogenic Escherichia coli strain. J Bacteriol 183: 2081 – 2085.en_US
dc.identifier.citedreferenceWaldor, M. K., and Mekalanos, J. J. ( 1996 ) Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272: 1910 – 1914.en_US
dc.identifier.citedreferenceWiedenheft, B., Stedman, K., Roberto, F., Willits, D., Gleske, A. K., Zoeller, L., et al. ( 2004 ) Comparative genomic analysis of hyperthermophilic archaeal Fuselloviridae viruses. J Virol 78: 1954 – 1961.en_US
dc.identifier.citedreferenceWommack, K. E., and Colwell, R. R. ( 2000 ) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64: 69 – 114.en_US
dc.identifier.citedreferenceZimmer, M., Sattelberger, E., Inman, R. B., Calendar, R., and Loessner, M. J. ( 2003 ) Genome and proteome of Listeria monocytogenes phage PSA: an unusual case for programmed +1 translational frameshifting in structural protein synthesis. Mol Microbiol 50: 303 – 317.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.