Show simple item record

Dual black holes in merger remnants – I. Linking accretion to dynamics

dc.contributor.authorDotti, Massimoen_US
dc.contributor.authorRuszkowski, Mateuszen_US
dc.contributor.authorParedi, L.en_US
dc.contributor.authorColpi, M.en_US
dc.contributor.authorVolonteri, Martaen_US
dc.contributor.authorHaardt, Francescoen_US
dc.date.accessioned2010-06-01T18:37:43Z
dc.date.available2010-06-01T18:37:43Z
dc.date.issued2009-07-01en_US
dc.identifier.citationDotti, M.; Ruszkowski, M.; Paredi, L.; Colpi, M.; Volonteri, M.; Haardt, F. (2009). "Dual black holes in merger remnants – I. Linking accretion to dynamics." Monthly Notices of the Royal Astronomical Society 396(3): 1640-1646. <http://hdl.handle.net/2027.42/71830>en_US
dc.identifier.issn0035-8711en_US
dc.identifier.issn1365-2966en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71830
dc.description.abstractWe study the orbital evolution and accretion history of massive black hole (MBH) pairs in rotationally supported circumnuclear discs up to the point where MBHs form binary systems. Our simulations have high resolution in mass and space which, for the first time, makes it feasible to follow the orbital decay of a MBH either counter- or corotating with respect to the circumnuclear disc. We show that a moving MBH on an initially counter-rotating orbit experiences an ‘orbital angular momentum flip’ due to the gas-dynamical friction, i.e. it starts to corotate with the disc before a MBH binary forms. We stress that this effect can only be captured in very high resolution simulations. Given the extremely large number of gas particles used, the dynamical range is sufficiently large to resolve the Bondi–Hoyle–Lyttleton radii of individual MBHs. As a consequence, we are able to link the accretion processes to the orbital evolution of the MBH pairs. We predict that the accretion rate is significantly suppressed and extremely variable when the MBH is moving on a retrograde orbit. It is only after the orbital angular momentum flip has taken place that the secondary rapidly ‘lights up’ at which point both MBHs can accrete near the Eddington rate for a few Myr. The separation of the double nucleus is expected to be around ≲10 pc at this stage. We show that the accretion rate can be highly variable also when the MBH is corotating with the disc (albeit to a lesser extent) provided that its orbit is eccentric. Our results have significant consequences for the expected number of observable double active galactic nuclei at separations of ≲100 pc.en_US
dc.format.extent551821 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2009 RASen_US
dc.subject.otherBlack Hole Physicsen_US
dc.subject.otherHydrodynamicsen_US
dc.subject.otherGalaxies: Evolutionen_US
dc.subject.otherGalaxies: Nucleien_US
dc.subject.otherGalaxies: Starbursten_US
dc.titleDual black holes in merger remnants – I. Linking accretion to dynamicsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelAstronomyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Astronomy, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationumThe Michigan Center for Theoretical Physics, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherDipartimento di Fisica e Matematica, UniversitÀ dell'Insubria, Via Valleggio 11, 22100 Como, Italyen_US
dc.contributor.affiliationotherDipartimento di Fisica G. Occhialini, UniversitÀ degli Studi di Milano Bicocca, Piazza della Scienza 3, 20126 Milano, Italyen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71830/1/j.1365-2966.2009.14840.x.pdf
dc.identifier.doi10.1111/j.1365-2966.2009.14840.xen_US
dc.identifier.sourceMonthly Notices of the Royal Astronomical Societyen_US
dc.identifier.citedreferenceArmitage P. J., Natarajan P., 2002, ApJ, 567, L9en_US
dc.identifier.citedreferenceArmitage P. J., Natarajan P., 2005, ApJ, 634, 921en_US
dc.identifier.citedreferenceBallo L., Braito V., Della Ceca R., Maraschi L., Tavecchio F., Dadina M., 2004, ApJ, 600, 634en_US
dc.identifier.citedreferenceBalsara D. W., 1995, J. Comput. Phys., 121, 357en_US
dc.identifier.citedreferenceBegelman M. C., Blandford R. D., Rees M. J., 1980, Nat, 287, 307en_US
dc.identifier.citedreferenceBianchi S., Chiaberge M., Piconcelli E., Guainazzi M., Matt G., 2008, MNRAS, 386, 105en_US
dc.identifier.citedreferenceBogdanovic T., Eracleous M., Sigurdsson S., 2009, ApJ, in press ( arXiv:0809.3262 )en_US
dc.identifier.citedreferenceComerford J. M. et al., 2008, ApJ, submitted (arXiv:0810.3235)en_US
dc.identifier.citedreferenceCuadra J., Armitage P. J., Alexander R. D., Begelman M. C., 2009, MNRAS, 393, 1423en_US
dc.identifier.citedreferenceDavies R. I., Tacconi L. J., Genzel R., 2004, ApJ, 613, 781en_US
dc.identifier.citedreferenceDecarli R., Gavazzi G., Arosio I., Cortese L., Boselli A., Bonfanti C., Colpi M., 2007, MNRAS, 381, 136en_US
dc.identifier.citedreferenceDi Matteo T., Springel V., Hernquist L., 2005, Nat, 2005, 433, 604en_US
dc.identifier.citedreferenceDotti M., Salvaterra R., Sesana A., Colpi M., Haardt F., 2006a, MNRAS, 372, 869en_US
dc.identifier.citedreferenceDotti M., Colpi M., Haardt F., 2006b, MNRAS, 367, 103en_US
dc.identifier.citedreferenceDotti M., Colpi M., Haardt F., Mayer L., 2007, MNRAS, 379, 956en_US
dc.identifier.citedreferenceDotti M., Montuori C., Decarli R., Volonteri M., Colpi M., Haardt F., 2008, MNRAS, submitted (arXiv:0809.3446)en_US
dc.identifier.citedreferenceDownes D., Solomon P. M., 1998, ApJ, 507, 615en_US
dc.identifier.citedreferenceEscala A., Larson R. B., Coppi P. S., Maradones D., 2005, ApJ, 630, 152en_US
dc.identifier.citedreferenceFerrarese L., 2006, in Colpi M., Gorini V., Haardt F., Moschella U., eds, Joint Evolution of Black Holes and Galaxies. Taylor & Francis Group, New York, p. 1en_US
dc.identifier.citedreferenceFerrarese L. et al., 2006, ApJ, 644, 2en_US
dc.identifier.citedreferenceForeman G., Volonteri M., Dotti M., 2009, ApJ, 693, 1554en_US
dc.identifier.citedreferenceHaiman Z., Kocsis B., Menou K., 2009, ApJ, submitted (arXiv:0904.1383)en_US
dc.identifier.citedreferenceHayasaki K., Mineshige S., Sudou H., 2007, PASJ, 59, 427en_US
dc.identifier.citedreferenceHayasaki K., Mineshige S., Ho L. C., 2008, ApJ, 682, 1134en_US
dc.identifier.citedreferenceHopkins P. F., Hernquist L., Martini P., Cox T. J., Robertson B., Di Matteo T., Springel V., 2005, ApJ, 625, L71en_US
dc.identifier.citedreferenceHopkins P. F., Hernquist L., Cox T. J., Di Matteo T., Robertson B., Springel V., 2006, ApJS, 163, 1en_US
dc.identifier.citedreferenceKazantzidis S. et al., 2005, ApJ, 623, L67en_US
dc.identifier.citedreferenceKlessen R. S., Spaans M., Jappsen A., 2007, MNRAS, 374, L29en_US
dc.identifier.citedreferenceKocsis B., Frei Z., Haiman Z., Menou K., 2005, ApJ, 637, 27en_US
dc.identifier.citedreferenceKomossa S., Burwitz V., Hasinger G., Predehl P., Kaastra J. S., Ikebe Y., 2003, ApJ, 582, L15en_US
dc.identifier.citedreferenceLippai Z., Frei Z., Haiman Z., 2008, ApJ, 676, L5en_US
dc.identifier.citedreferenceLodato G., Rice W. K. M., 2004, MNRAS, 351, L630en_US
dc.identifier.citedreferenceMarconi A., Risaliti G., Gilli R., Hunt L. K., Maiolino R., Salvati M., 2004, MNRAS, 351, 169en_US
dc.identifier.citedreferenceMayer L., Kazantzidis S., Madau P., Colpi M., Quinn T., Wadsley J., 2007, Sci, 316, 1874en_US
dc.identifier.citedreferenceMilosavljevic M., Phinney E. S., 2005, ApJ, 622, L93en_US
dc.identifier.citedreferenceMonaghan J. J., Gingold R. A., 1983, J. Comput. Phys., 52, 374en_US
dc.identifier.citedreferenceNelson A. F., 2006, MNRAS, 373, 1039en_US
dc.identifier.citedreferenceRichstone D. et al., 1998, Nat, 395, 14en_US
dc.identifier.citedreferenceRodriguez C., Taylor G. B., Zavala R. T., Peck A. B., Pollack L. K., Romani R. W., 2006, ApJ, 646, 49en_US
dc.identifier.citedreferenceSanders D. B., Mirabel I. F., 1996, ARA&A, 34, 749en_US
dc.identifier.citedreferenceSchnittman J. D., Krolik J. H., 2008, ApJ, 684, 870en_US
dc.identifier.citedreferenceShankar F., Salucci P., Granato G. L., De Zotti G., Danese L., 2004, MNRAS, 354, 1020en_US
dc.identifier.citedreferenceSpaans M., Silk J., 2000, ApJ, 538, 115en_US
dc.identifier.citedreferenceSpringel V., Yoshida N., White S. D. M., 2001, New Astron., 6, 79en_US
dc.identifier.citedreferenceSpringel V., Di Matteo T., Hernquist L., 2005, ApJ, 622, L9en_US
dc.identifier.citedreferenceSteinmetz M., 1996, MNRAS, 278, 1005en_US
dc.identifier.citedreferenceValtonen M. J., 2007, ApJ, 659, 1074en_US
dc.identifier.citedreferenceVolonteri M., Haardt F., Madau P., 2003, ApJ, 582, 559en_US
dc.identifier.citedreferenceWada K., 2004, in Ho L. C., ed., Coevolution of Black Holes and Galaxies. Cambridge Univ. Press, Cambridge, p. 186en_US
dc.identifier.citedreferenceWada K., Norman C. A., 2001, ApJ, 547, 172en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.